Deep3DFly

Semih Günel, Helge Rhodin, Daniel Morales, João H. Campagnolo, Pavan Ramdya ve Pascal Fua’nın EPFL’de – École Polytechnique Fédérale de Lausanne– aktif öğrenme alanında değerli bir araştırma gerçekleşti. Araştırmanın amacı sineklerin hareketelerini gözlemleyerek aktif öğrenme alanında ilerleme sağlamaktı.

Araştırma nasıl tasarlandı?

Ramdya’nın deneysel düzeninde bir sinek, minik bir koşu bandı gibi küçük bir yüzen topun üstüne yürürken, yedi kamera her hareketini kaydetti. Sineğin üst kısmı taşınmaz bir stada yapıştırıldı, böylece top üzerinde yürürken daima yerinde kaldı. Bununla birlikte, sinek serbestçe hareket ettiğine “inanıyordu”.Toplanan kamera görüntüleri daha sonra hem Ramdya’nın hem de Fua’nın laboratuvarlarıyla çalışan bir doktora öğrencisi olan Semih Günel’in geliştirdiği derin öğrenme yazılımı DeepFly3D tarafından işlendi. Ramdya, “Bu, disiplinlerarası işbirliğinin gerekli ve dönüştürücü olduğunun iyi bir örneği. Bilgisayar bilimi ve sinirbiliminden yararlanarak uzun zamandır devam eden bir zorluğun üstesinden geldik.” dedi.

Neden araştırmada sinekler kullanıldı?

Ramdya sineklerin kullanılma sebebini “Omurgalıların çoğunun aksine, sinekler neredeyse her araziye tırmanabilirler. Bacaklarının uçlarında yapışkan pedler ve pençeler olduğundan, sinekler duvar ve tavanlara yapışabilirler. Bunlar haraketlerini sağlar. Bu da ilginç çünkü herhangi bir yüzeyde dinlenebilirseniz, doğru zamanda hareket etmesini bekleyerek enerji harcamalarınızı yönetebilirsiniz. ” şeklinde anlattı.

Bu, biyoloji boyunca neredeyse her yerde kullanılan bir model organizma olan sinek Drosophila melanogaster için bir hareket yakalama sistemi olan DeepFly3D’nin gelişimini sürdüren robotların tasarımını bilgilendirmek için uçma davranışını yöneten ilkeleri çıkarma vizyonuydu.

Deep3DFly’ı önemli kılan şey nedir?

DeepFly3D ile ilgili özel olan şey, sineklerin 3B pozunu – veya hatta diğer hayvanları – ortaya çıkarabilmesi. Yani, çeşitli biyolojik uygulamalar için benzeri görülmemiş bir çözünürlükte otomatik olarak tahmin yapıp davranış ölçümleri yapabilir. Yazılımın manuel olarak kalibre edilmesi gerekmiyor ve sinek pozunun hesaplanmasında yaptığı hataları otomatik olarak algılamak ve düzeltmek için kamera görüntülerini kullanıyor. Son olarak, kendi performansını geliştirmek için aktif öğrenmeyi kullanıyor.

DeepFly3D, bir meyve sineğinin hareketlerini, pozlarını ve eklem açılarını üç boyutlu olarak etkin ve doğru bir şekilde modellemek için bir fırsat sağlıyor. Bu, diğer organizmalardaki 3D pozları otomatik olarak modellemek için standart bir yol olabilir.

Yazıyı toplamak gerekirse;

Ramdya’nın da dediği gibi sinek, “Bir model organizma olarak izlenebilirliği ve karmaşıklığı çok iyi dengeliyor.” Buna ek olarak, “Nasıl yaptığını öğrenirsek, robotik ve tıp üzerinde önemli bir etkiye sahip olabiliriz ve belki de en önemlisi, bu öngörüleri nispeten kısa bir sürede elde edebiliriz.”sözlerini de ekliyor. Araştırma genel olarak baktığımızda araştırmanın robotik ve tıp alanlarında etkiye sahip olabilmeleri, getirecekleri yeniliklerle merakı arttırıyor.

Neuroscience News, Deep3DFly: the deep-learning way to design fly-like robots,son güncelleme 9 Ekim, 2019, https://neurosciencenews.com/deep3dfly-ai-15052/

Beyindeki motivasyon ile hareket etmeyi bağlayan bir merkez

19 Eylül 2019 tarihinde yayınlanan araştırmaya göre, lateral septum (LS) bir hayvan dolaşırken ve bir ortamda nasıl bir ödül alınacağını öğrenirken hayvanın hızı ve ivmesiyle ilgili bilgileri doğrudan kodlar.

Bu ne demek?

MIT sinirbilimcileri yaptıkları araştırmada, lateral septumun hedefe yönelik hareketi yönlendiren ve motive olunmuş davranışları bağladığını buldu. Örnek vermek gerekirse, akşam yemeği için yiyecek elde etmek beynin tahmin edemeyeceğimiz kadar fazla bölgesinin koordinasyonu ve beraber çalışması ile oluyor. Bunlarla beraber, buz dolabından mı yoksa dışarıdan mı yiyecek alınma gibi etkenleri tartıyor. Hannah Witshafter “ LS’nin yer, hareket ve motivasyonel bilgileri temsil etmesi, LS’nin yer, hız ve diğer çevresel sinyaller dikkate alınarak performansı entegre etmenize veya optimize etmenize yardımcı olabilir.“ diyor.

Bundan önce yapılan araştırmada neler bulundu?

Önceki araştırmalar lateral septuma kaygı, saldırganlık ve etkiyi düzenleme gibi önemli davranışsal işlevleri atfetmişti. Ayrıca bağımlılık, psikoz, depresyon ve kaygı ile ilgili olduğuna inanılıyor.

Sinir bilimciler, lateral septumun mekansal anıları kodlamak ve onları bağlamla ilişkilendirmek için çok önemli bir merkez olan hipokampus ile bağlantılarını ve nörotransmiter dopamin yoluyla hedefe yönelik davranışlara aracılık eden bir bölge olan ventral tegmental alana (VTA) bağlantılarını takip ettiler. Fakat, şimdiye kadar hiç kimse lateral septum’un hareketi ve mekansal ödül bağlamı gibi belirli sinirsel ritimler ile senkronize ederek hareketi doğrudan takip ettiğini ya da hipokampus ile iletişim kurduğunu göstermedi.

Wirtshafter bu konu hakkında “Hipokampus beynin en çok araştırılan bölümlerinden biri. Karşılaştırma yapıldığında motivasyon ve hareketle alakalı bölgeler ile bağlantılı olsa ve hipokampusten fazla sayıda bilgi alsa bile lateral septum hakkında çok daha az şey biliniyor.” diyor.

Ekipden başka bir sinir bilimci olan Wilson,“Lateral septumdaki aktivitenin hareketle kontrol edildiği keşfi, lateral septum aracılığıyla hareket ve dopaminerjik kontrol arasındaki bellek, biliş ve hastalık ile ilgili olabilecek bir bağlantıya işaret ediyor.” dedi.

Nasıl bir deney yapıldı?

T şeklinde bir labirente konulan fareler gözlemlenerek yapıldı. Fareler, ışık ve ses işaretleri kullanarak ödüllendirildiklerine koşullandırıldı.

Yazıyı toparlamak gerekirse;

Wilson ve Wirtshafter “ Genel olarak, bulgular lateral septumdaki harekete bağlı sinyalin, hipokampustan aldığı girdiyle birleştiğinde -hayvan hareketinden kaynaklanan bağlamda ilgili değişiklikler ile beraber – lateral septumun bir hayvanın bulunduğu yerde kendi konumu hakkındaki farkındalığına ve görevi değerlendirme yeteneğine katkıda bulunmasına izin verebileceğini öne sürmektedir.” dedi.

Bu aynı zamanda, lateral septumun rapor edilen etki ve davranışları düzeltme kabiliyetinin iç durumların hareket sırasında nasıl değiştiğini ve bu değişikliklerin sonuçlarını ve sonuçlarını değerlendirme kabiliyetinden kaynaklanabileceğini gösteriyor. Örneğin, lateral septum hareketi pozitif veya negatif bir uyaranın bulunduğu yere doğru veya uzağa yönlendirmeye katkıda bulunabilir.

Bu nedenle, yeni çalışma lateral septumun yönlendirilmiş davranıştaki rolü hakkında yeni bakış açıları sunuyor ve lateral septumun bazı bozukluklarla bilinen ilişkileri göz önüne alındığında, ruh hali, motivasyon ve hareket ve zihinsel hastalıkların nöropsikiyatrik temeli ile ilgili mekanizmaların daha geniş bir şekilde anlaşılması için yeni çıkarımlar sunabilir.

Wirtshafter “ Lateral septumun hareket ve motivasyonda nasıl çalıştığını anlamak, beynin nasıl temel kararlar verdiğini ve bu süreçlerde yaşanan bozulmanın nasıl farklı bozukluklara yol açabileceğini anlamamıza yardımcı olur ”diyor.

Neuroscience News, Study finds hub linking movement and motivation in the brain, son güncelleme 19 Eylül, 2019, https://neurosciencenews.com/movement-motivation-hub-14950/

SuperAgerların Beyin ve Hafıza Yapısı

Cerebral Cortex’de yayınlanan bir araştırmaya göre, SuperAgers’ların diğer yaşıtlarına göre beyninde daha fazla nöron bağı ve buna bağlı olarak gençlerin hafıza yapılarına benzer hafızaya sahip oldukları bulundu.

SuperAgers kimlerdir? Özellikleri neler?

SuperAgers, diğer yaşça ilerideki bireylerden farklı olarak hafızaları daha ileri olan insan grubu. Bilim dünyasında nasıl böyle kaldıkları önemli bir konu. Onların alışkanlıkları ve nasıl yaşadıklarına bakılarak hafızayı kuvvetli tutmak gibi konularda araştırma yapılıyor. Jiahe Zhang, Joseph M Andreano, Bradford C Dickerson, Alexandra Touroutoglou ve Lisa Feldman Barrett bu araştırmalardan birini yapan bir takım.

Nasıl bir araştırma yapıldı? Sonuçlar neler?

Bu 3 araştırma yapılan bir serinin 2. aşaması. Takım yaptıkları araştırmada, 60 ile 80 ve 18 ile 35 yaşları arasındaki bireyleri incelediler. Araştırmada fMRI, salience network (SN) ve default mode network (DMN) kullanıldı. Takımın tahmini, tipik yaşlı yetişkinlerin bu beyin dalgalarında daha az senkronizasyona sahip olacağı – daha az verimli ağlar – ve superagerlarında genç yetişkinler kadar verimli ağlara sahip olacağıydı. Takım tahminlerinin doğru olduğunu belirtti.

İlk çalışmada, tipik yaşlı yetişkinlerle karşılaştırıldığında, superagerların beyinlerinin, öğrenme, saklama ve bilgi alma da dahil olmak üzere belleğe katkıda bulunan süreçler için önemli olan bazı alanlarda daha büyük olduğu görüldü. Ancak, beyin bölgeleri izole adalar değil; karmaşık davranışlara izin vermek için birbirleriyle “konuşan” ağlar oluşturuyorlar. Dr. Alexandra Touroutoglou “ Beyin bölgeleri arasındaki bu iletişim normal yaşlanma sırasında bozuluyor, Superagers sadece genç beyin yapısını değil, aynı zamanda genç bağları gösteriyor. ” diyor.

Ekip gelecekte ne planlıyor?

Takım, bir sonraki çalışmasında hafıza ve diğer bilişsel görevleri yapan beyinlerden gelen fMRI verilerini analiz edecek. Dr. Touroutoglou, birlikte ele alındığında, çalışmaların gelecekteki araştırmacılar için başarılı yaşlanmanın biyolojik belirteçlerini geliştirmeleri için temeller sağlamasının umut edildiğini paylaştı.

SuperAgerların daha büyük ve iyi beyin ile doğup doğmadıkları bilim insanlarının çözmek istediği bir sır. Sonraki araştırmalar genetik, egzersiz, sosyal bağ ve diğer yaşam etkenlerinin etkisini ölçebilir. Dickerson “Onlara superagers gibi olmaları için vereceğimiz reçeteyi belirlemeyi umuyoruz. İnsanlar superager olmak isterlerse onlara yardımcı olmak amacımız.” diyor.

Neuroscience News, ‘Superagers’ over 80 have the memory and brain connectivity of twenty-somethings, son güncelleme 9 Eylül, 2019, https://neurosciencenews.com/superager-brain-connections-14885/

Alfa-sinüklein

OHSU’da, Oregon Health & Science University, yapılan yeni bir araştırmaya göre Parkinson ve Lewy Cisimcikli Demans, Parkinson ve diğer demans hastalıkları ile bağlantılı olan bir hastalık, hastalıklarını iyileştirmek için alfa-sinüklein adındaki protein düşünülenden çok farklı bir fonksiyona sahip. Araştırmaya göre, proteinin hücre çekirdeği içindeki DNA’ların hasarlı ipliklerini düzeltme özelliği var. Bu da hücre ölümünü engelleyebileceğini gösteriyor.

Daha detaylı olarak alfa-sinüklein nasıl faydalar sağlayabilir?

Uzmanlar, Parkinson hastalığı gibi hastalıklarda hücre ölümünü engellemesinin kaybolmuş olabileceğini söylüyor. Bilim insanları yapılan deneyde proteinin bu özelliğini gözlemliyor. Bilim insanları, Lewy Cisimcikli Demans hastalığında alfa-sinükleinin beyin hücrelerinin çekirdeklerinden çekildiğini öneriyor.

Doktor Vivek Unni “Bu ilk defa DNA onarımı hakkında işlevlerden herhangi birinin keşfedilişi. Bu, hücrenin hayatta kalması için kritik öneme sahip ve Parkinson hastalığında kaybedilen bir işlev gibi görünüyor.” diyor.

Bulgular, alfa-sinükleinin işlevinin yerine geçecek yeni tedaviler tasarlamanın ya da Parkinson hastalığı ve diğer nörodejeneratif hastalıkları olan kişilerde arttırılmasının mümkün olabileceğini gösteriyor.

Bu araştırma ne anlama geliyor?

Daha basit anlatmak gerekirse, alfa-sinüklein fabrika çalışanları gibi. Bu çalışanlar uzayan kahve molası veriyor ve makineler kendi kendilerine çalışmaya devam ediyor. Alfa- sinüklein bundan dolayı Lewy Cisimcikli Demans hastalığında çok önemli bir göreve sahip. Geliştirebilinecek yeni tedavi yöntemleri ile bu hastalıklara çözümler bulunabilinir.

Neuroscience News, Discovery could lead to new treatments for Parkinson’s, other brain diseases, son güncelleme 29 Temmuz, 2019, https://neurosciencenews.com/alpha-synuclein-dna-14606/

Anısal Hafıza

Arabanızı park ettiğiniz yeri nasıl hatırlarsınız?

Neil Burgess bu sorunun cevabını anısal hafızanızı kullanarak hatırlarsınız olarak veriyor. (1)

Anısal hafıza nedir?

Geçmişte deneyimlediğiniz şeyleri tekrar deneyimlemenizi sağlayan hafıza türü. Beynimiz bunu deneyimleri kaydeden merkezi hipokampusten bilgileri alarak gelecek zamanlarda deneyimleri tekrar yaşamamızı sağlar. (2)

Bunu nasıl yapar?

Bu soruyu cevaplarken 2014 yılında Nobel Fizyoloji veya Tıp Ödülü’ne layık görülmüş John O’Keefe, May-Britt Moser ve Edvard I. Moser‘ın yaptıkları içsel konumlandırma çalışmalarından bahsederek cevap vereceğim.1971’den başlayarak O’Keefe yer hücrelerini buldu ve 2005 yılında May-Britt Moser ve Edvard I. Moser şebeke hücrelerini bularak araştırmaya katkı sağladılar. Heyet te buna bağlı kalarak ödülün %50’sini O’Keefe’e ve diğer paydayı da, %50, %25 – %25 bölerek May-Britt ve Edvard I. Moser’e layık gördü. (3)

Araştırmanın sonuçları nelerdi?

1971 yılında O’Keefe sıçanlar üzerinde yaptığı çalışmada gezindikleri odanın her bir yerinde beyinlerinde ayrı sinir hücresinin etkinleştiğini gözlemledi. Yer hücresi denilen bu hücreler birleşince odanın haritasını çıkardılar. 2005 yılında da May- Britt Moser ve Edvard I. Moser şebeke hücrelerini keşfederek çalışmaya katkıda bulundular. (4)

Yer duygusu ve yön bulma becerisi nedir?

“Yer duygumuz ve yön bulma becerimiz beynimizin en temel işlevleri arasında. Yer duygusu, vücudumuzun bulunduğumuz ortam içindeki konumuna yönelik bir algı sağlar. Bu duygu, yön bulma sırasında bir uzaklık ve yön duygusuyla bağlantılı olarak işler. Bu uzaklık ve yön duygusu ise hareketi ve önceki konumların bilgisini temel alır. Çevremizi tanıyıp hatırlayarak yolumuzu bulmamız bu mekânsal işlevler sayesinde mümkün olur.” (5) Kendi kelimelerimle açıklayacak olursam, yer ve şebeke hücreleri bulunduğumuz mekanı kaydederek gelecek zamanlarda hatırlamamızı sağlar.

Yer duygusu ve yön bulma becerisi nasıl hücreler ile oluşuyor?

Yazının devamına göre “Bu hücreler, entorinal kortekste bulunan ve başın yönü ile odanın sınırlarını tanımayı sağlayan başka hücrelerle birlikte çalışarak hipokampustaki yer hücreleriyle sinirsel devreler kuruyor. İşte bu devre sistemi beynimizde kapsamlı bir konumlandırma sistemi oluşturuyor” (6)

Konuyu toparlamak gerekirse;

Anısal hafıza yer duygusu ve yön bulma becerisi için oldukça önemli. Yer ve şebeke hücrelerinin içsel konumlandırma sistemimize katkıları birçok diğer çalışmalar ile de kanıtlanmış. Bunlardan önemli bir tanesi Brenda Milner’ın hastası Henry Gustav Molaison‘ın, literatürde H.M olarak bilinir, 27 yaşında hipokampusunun alınmasından sonra yaşadığı hafıza kaybı oldu. Hasta 1966 yılında 40. yaş gününde kendi fotoğrafını gördüğünde kendisini tanıyamadı. Kendisini hala 27 yaşında sanıyordu. Bu ve diğer acı eşiğinde değişim gibi diğer sonuçlarla da beraber, H.M sinirbilimine çağ atlatacak bulgulardan birini sundu. (7) Brenda Milner ve diğer bilim insanları yaptığı çalışmalarla beraber anısal hafıza ve hipokampus arasındaki bağı gösterdi.

(1)“ Short term Memory Neil Burgess”, YouTube Video, 10:54, “ Serious Science” , 25 Mayıs, 2018, https://youtu.be/UFE7vyqoiGU

(2)“ Short term Memory Neil Burgess”, YouTube Video, 10:54, “ Serious Science” , 25 Mayıs, 2018, https://youtu.be/UFE7vyqoiGU

(3) İlay Çelik, Yolumuzu Bulmamızı Sağlayan Sistemin Keşfi Nobel Kazandırdı

, son güncelleme 10 Aralık, 2014, http://www.bilimgenc.tubitak.gov.tr/makale/yolumuzu-bulmamizi-saglayan-sistemin-kesfi-nobel-kazandirdi

(4) İlay Çelik, Yolumuzu Bulmamızı Sağlayan Sistemin Keşfi Nobel Kazandırdı

, son güncelleme 10 Aralık, 2014, http://www.bilimgenc.tubitak.gov.tr/makale/yolumuzu-bulmamizi-saglayan-sistemin-kesfi-nobel-kazandirdi

(5) İlay Çelik, Yolumuzu Bulmamızı Sağlayan Sistemin Keşfi Nobel Kazandırdı

, son güncelleme 10 Aralık, 2014, http://www.bilimgenc.tubitak.gov.tr/makale/yolumuzu-bulmamizi-saglayan-sistemin-kesfi-nobel-kazandirdi

(6) İlay Çelik, Yolumuzu Bulmamızı Sağlayan Sistemin Keşfi Nobel Kazandırdı

, son güncelleme 10 Aralık, 2014, http://www.bilimgenc.tubitak.gov.tr/makale/yolumuzu-bulmamizi-saglayan-sistemin-kesfi-nobel-kazandirdi

(7) Necib Mahmuz, Sinirbilim Tarihini Değiştiren Hasta: H.M.

, son güncelleme 19 Haziran, 2019, http://noroblog.net/2019/06/19/sinirbilim-tarihini-degistiren-hasta-h-m/