Beyindeki uzun süreli hafıza ve öğrenme mekanizmaları

Virginia Tech ‘de David Xie ve diğer bilim insanlarının yaptığı bir araştırmaya göre, Erg1 ve TET1 uzun süreli hafıza ve öğrenmede önemli rollere sahip.

Bu ne anlama geliyor? Nasıl daha farklı anlatılabilinir?

Bir akıllı telefon aldığınızı düşünün. Satın aldığınız an, ayarlar ve uygulamarın hepsi aynı. Fakat zaman geçtikçe telefonu nasıl kullanırsanız, ayarlar ve uygulamalar da değişicektir. Aynı şekilde, hafızamız da bu şekilde çalışıyor. Deneyimlerimiz ile bir diğer insandan farklı oluyoruz. En basit deneyimlerimiz bile beyinlerimizi hücresel seviyede değiştiriyor.

Xie ve diğer bilim insanları DNA’nın mettilenme sürecinde beyindeki kontrol eden kayıt etkenleri ve enzimleri buldu. Bu çalışma ile, Alzheimer ve diğer hafıza kaybı yaşanan hastalıkların anlaşılması için çok değerli bilgiler sağlanıyor. Xie “Her deneyim ve öğrenme süreciyle farklı insanlar olmaya programlandın. Öğrenme sürecinin beyinde nasıl gerçekleştiğini ve öğrenilen her yeni bilginin yarın sizi nasıl farklılaştıracağını anlamaya başlamak büyüleyici. ”diyor.

Deney nasıl yapılmış? Egr1 ve TET1 nedir?

Egr1 ve TET1 enzimi telefonunuza kayıt yapmanızı sağlayan program gibiler. Deney fareler üzerinde yapıldı. Deney sırasında farelerin beyinlerinin ön korteksine – öğrenmenin kayıtlı olduğu, beynin olgunlaşması en yavaş olduğu birincil beyin bölgesi– bakıldı.

Egr1, DNA’nın RNA’ya transkripsiyonuna yardımcı olan bir protein olan bir transkripsiyon faktörü. Egr1, uzun süreli hafıza oluşumunda hayati bir rol oynuyor ve önceki araştırmalar, transkripsiyon faktörü bir fareden çıkarıldığında hafıza kaybı sonuçlarının ortaya çıktığını gösteriyor.

TET1 ise aktif DNA demetilasyonunda rol oynayan bir enzim. DNA metilasyonu, bir DNA molekülüne bir metil grubu eklendiğinde oluşuyor, bu daha sonra bir genin promotor bölgesini engelliyor. Başka bir deyişle, DNA metillendiğinde genler aktive edilemiyor.

Egr1 ve TET1, bu metil grubunun çıkarılması ile görevlendirilir, böylece gen ifadesi aktive edilebilir ve anılar saklanabilir.

Başka bir benzetme ile anlatmak gerekilirse, temel olarak gen ifademizi kontrol eden veya ifade seviyelerimizi artıran veya azaltan bir “ açık” veya ” kapalı” düğmesi var. EGR1 bu anahtarlama sistemini kullanmamıza yardımcı oluyor, böylece harici bir uyarıcı aldığınızda genler ifade edilecek ve daha hızlı bir şekilde ifade ediliyor.

Araştırmacılar, bu Egr1-TET1 ekip çalışmasının beynin ötesine geçen öğrenme mekanizması olabileceğini görüyorlar. Örneğin, kanda Egr1 ve TET1’e benzer “aile üyeleri” var.

Bağışıklık sisteminde, hafıza B hücreleri ve hafıza T hücreleri immünolojik hafızayı oluşturmak ve korumak için anahtar. Geçmiş istilacıların antijenlerini hatırlama yeteneklerine sahipler, böylece bir sonraki saldırıya uğradıklarında hızlı bir immünolojik tepki başlatabilirler.

Bu çalışma ne anlama geliyor?

Bu süreç teorik olarak diğer organların hatıralar oluşturabileceği ihtimaline işaret ediyor. Bu bulgunun ciddiyeti öğrenme açısından önemli. Burada iki güzel soru akla geliyor;

1.Öğrenmenin daha iyiye gitmek için değiştirebilme olasılığı var mı?

2. Öğrenmeyi geliştirmek için eğitim sistemini değiştirebilir miyiz?

Xie “Bilmediğimiz birçok temel şey var. Örneğin, işaretçiler ve gen anahtarları: Onları nasıl tanımlayabiliriz ve bu anahtarları kullanabilir miyiz? Bu bazı hastalıkları izlemek için kullanılabilir mi? Belirli olayları izlemek için kullanılabilir mi? Bence bize gelen çok şey var ve şu anda neler yapabileceğimizi düşünmemiz gerekiyor, ”diyor. Gelecekteki araştırmalar için, Xie farklı tür nöronların dış uyaranlara cevap vermek için farklı mekanizmaları nasıl kullandıkları hakkında daha fazla bilgi edinmekle ilgileniyor.

Neuroscience News, The mechanisms behind learning and long-term memory in the brain, son güncelleme 2 Ekim, 2019, https://neurosciencenews.com/learning-memory-mechanisms-15020/

Beyindeki motivasyon ile hareket etmeyi bağlayan bir merkez

19 Eylül 2019 tarihinde yayınlanan araştırmaya göre, lateral septum (LS) bir hayvan dolaşırken ve bir ortamda nasıl bir ödül alınacağını öğrenirken hayvanın hızı ve ivmesiyle ilgili bilgileri doğrudan kodlar.

Bu ne demek?

MIT sinirbilimcileri yaptıkları araştırmada, lateral septumun hedefe yönelik hareketi yönlendiren ve motive olunmuş davranışları bağladığını buldu. Örnek vermek gerekirse, akşam yemeği için yiyecek elde etmek beynin tahmin edemeyeceğimiz kadar fazla bölgesinin koordinasyonu ve beraber çalışması ile oluyor. Bunlarla beraber, buz dolabından mı yoksa dışarıdan mı yiyecek alınma gibi etkenleri tartıyor. Hannah Witshafter “ LS’nin yer, hareket ve motivasyonel bilgileri temsil etmesi, LS’nin yer, hız ve diğer çevresel sinyaller dikkate alınarak performansı entegre etmenize veya optimize etmenize yardımcı olabilir.“ diyor.

Bundan önce yapılan araştırmada neler bulundu?

Önceki araştırmalar lateral septuma kaygı, saldırganlık ve etkiyi düzenleme gibi önemli davranışsal işlevleri atfetmişti. Ayrıca bağımlılık, psikoz, depresyon ve kaygı ile ilgili olduğuna inanılıyor.

Sinir bilimciler, lateral septumun mekansal anıları kodlamak ve onları bağlamla ilişkilendirmek için çok önemli bir merkez olan hipokampus ile bağlantılarını ve nörotransmiter dopamin yoluyla hedefe yönelik davranışlara aracılık eden bir bölge olan ventral tegmental alana (VTA) bağlantılarını takip ettiler. Fakat, şimdiye kadar hiç kimse lateral septum’un hareketi ve mekansal ödül bağlamı gibi belirli sinirsel ritimler ile senkronize ederek hareketi doğrudan takip ettiğini ya da hipokampus ile iletişim kurduğunu göstermedi.

Wirtshafter bu konu hakkında “Hipokampus beynin en çok araştırılan bölümlerinden biri. Karşılaştırma yapıldığında motivasyon ve hareketle alakalı bölgeler ile bağlantılı olsa ve hipokampusten fazla sayıda bilgi alsa bile lateral septum hakkında çok daha az şey biliniyor.” diyor.

Ekipden başka bir sinir bilimci olan Wilson,“Lateral septumdaki aktivitenin hareketle kontrol edildiği keşfi, lateral septum aracılığıyla hareket ve dopaminerjik kontrol arasındaki bellek, biliş ve hastalık ile ilgili olabilecek bir bağlantıya işaret ediyor.” dedi.

Nasıl bir deney yapıldı?

T şeklinde bir labirente konulan fareler gözlemlenerek yapıldı. Fareler, ışık ve ses işaretleri kullanarak ödüllendirildiklerine koşullandırıldı.

Yazıyı toparlamak gerekirse;

Wilson ve Wirtshafter “ Genel olarak, bulgular lateral septumdaki harekete bağlı sinyalin, hipokampustan aldığı girdiyle birleştiğinde -hayvan hareketinden kaynaklanan bağlamda ilgili değişiklikler ile beraber – lateral septumun bir hayvanın bulunduğu yerde kendi konumu hakkındaki farkındalığına ve görevi değerlendirme yeteneğine katkıda bulunmasına izin verebileceğini öne sürmektedir.” dedi.

Bu aynı zamanda, lateral septumun rapor edilen etki ve davranışları düzeltme kabiliyetinin iç durumların hareket sırasında nasıl değiştiğini ve bu değişikliklerin sonuçlarını ve sonuçlarını değerlendirme kabiliyetinden kaynaklanabileceğini gösteriyor. Örneğin, lateral septum hareketi pozitif veya negatif bir uyaranın bulunduğu yere doğru veya uzağa yönlendirmeye katkıda bulunabilir.

Bu nedenle, yeni çalışma lateral septumun yönlendirilmiş davranıştaki rolü hakkında yeni bakış açıları sunuyor ve lateral septumun bazı bozukluklarla bilinen ilişkileri göz önüne alındığında, ruh hali, motivasyon ve hareket ve zihinsel hastalıkların nöropsikiyatrik temeli ile ilgili mekanizmaların daha geniş bir şekilde anlaşılması için yeni çıkarımlar sunabilir.

Wirtshafter “ Lateral septumun hareket ve motivasyonda nasıl çalıştığını anlamak, beynin nasıl temel kararlar verdiğini ve bu süreçlerde yaşanan bozulmanın nasıl farklı bozukluklara yol açabileceğini anlamamıza yardımcı olur ”diyor.

Neuroscience News, Study finds hub linking movement and motivation in the brain, son güncelleme 19 Eylül, 2019, https://neurosciencenews.com/movement-motivation-hub-14950/

SuperAgerların Beyin ve Hafıza Yapısı

Cerebral Cortex’de yayınlanan bir araştırmaya göre, SuperAgers’ların diğer yaşıtlarına göre beyninde daha fazla nöron bağı ve buna bağlı olarak gençlerin hafıza yapılarına benzer hafızaya sahip oldukları bulundu.

SuperAgers kimlerdir? Özellikleri neler?

SuperAgers, diğer yaşça ilerideki bireylerden farklı olarak hafızaları daha ileri olan insan grubu. Bilim dünyasında nasıl böyle kaldıkları önemli bir konu. Onların alışkanlıkları ve nasıl yaşadıklarına bakılarak hafızayı kuvvetli tutmak gibi konularda araştırma yapılıyor. Jiahe Zhang, Joseph M Andreano, Bradford C Dickerson, Alexandra Touroutoglou ve Lisa Feldman Barrett bu araştırmalardan birini yapan bir takım.

Nasıl bir araştırma yapıldı? Sonuçlar neler?

Bu 3 araştırma yapılan bir serinin 2. aşaması. Takım yaptıkları araştırmada, 60 ile 80 ve 18 ile 35 yaşları arasındaki bireyleri incelediler. Araştırmada fMRI, salience network (SN) ve default mode network (DMN) kullanıldı. Takımın tahmini, tipik yaşlı yetişkinlerin bu beyin dalgalarında daha az senkronizasyona sahip olacağı – daha az verimli ağlar – ve superagerlarında genç yetişkinler kadar verimli ağlara sahip olacağıydı. Takım tahminlerinin doğru olduğunu belirtti.

İlk çalışmada, tipik yaşlı yetişkinlerle karşılaştırıldığında, superagerların beyinlerinin, öğrenme, saklama ve bilgi alma da dahil olmak üzere belleğe katkıda bulunan süreçler için önemli olan bazı alanlarda daha büyük olduğu görüldü. Ancak, beyin bölgeleri izole adalar değil; karmaşık davranışlara izin vermek için birbirleriyle “konuşan” ağlar oluşturuyorlar. Dr. Alexandra Touroutoglou “ Beyin bölgeleri arasındaki bu iletişim normal yaşlanma sırasında bozuluyor, Superagers sadece genç beyin yapısını değil, aynı zamanda genç bağları gösteriyor. ” diyor.

Ekip gelecekte ne planlıyor?

Takım, bir sonraki çalışmasında hafıza ve diğer bilişsel görevleri yapan beyinlerden gelen fMRI verilerini analiz edecek. Dr. Touroutoglou, birlikte ele alındığında, çalışmaların gelecekteki araştırmacılar için başarılı yaşlanmanın biyolojik belirteçlerini geliştirmeleri için temeller sağlamasının umut edildiğini paylaştı.

SuperAgerların daha büyük ve iyi beyin ile doğup doğmadıkları bilim insanlarının çözmek istediği bir sır. Sonraki araştırmalar genetik, egzersiz, sosyal bağ ve diğer yaşam etkenlerinin etkisini ölçebilir. Dickerson “Onlara superagers gibi olmaları için vereceğimiz reçeteyi belirlemeyi umuyoruz. İnsanlar superager olmak isterlerse onlara yardımcı olmak amacımız.” diyor.

Neuroscience News, ‘Superagers’ over 80 have the memory and brain connectivity of twenty-somethings, son güncelleme 9 Eylül, 2019, https://neurosciencenews.com/superager-brain-connections-14885/

Neden geçmişimizi haz veren duygularla hatırlıyoruz?

Farzedin arkadaşlarınızla beraber bir yemektesiniz ve geçmiş hakkında konuşmaya başladınız. Bir anda gençlik yıllarınızda yaşadığınız bir anınız aklınıza geldi ve keyifle anlatmaya başladınız. Geçmişinize baktığınızda bu ne kadar oluyor? Kaç defa gençliğiniz sizi keyiflendiren konulara dönüşüyor?

Yapılan araştırmaya göre bunu yapan beynimiz. Bunun 3 nedeni bulunuyor.

1. Hafıza seçici.

2. Ergenlik yıllarımızın anıları önemli.

3. Hafıza sosyal bir birleştirici.

Hafızanın seçici olması.

Bir tecrübeyi veya olayı hatırlamak için dikkat etmemiz gerekir. O zaman düşünerek ya da konuşarak prova yapılır. Bu şekilde kodlanmış olaylar, uzun süreli hafızamızda saklanır. Ama her hatıramızı hatırlamayız. Hatırladığımız anılar bizim için duygusal anlamı olan, ilk deneyim ve büyük değişiklikler içerenlerdir.

Bununla beraber, bazı anılarımızı hatırlamamızın psikolojik amaçları var. Kendimizi nasıl görmek istiyorsak ona göre anılarımızı hatırlıyoruz. Örnek vermek gerekirse, konuştuğunuz kişiyle vakit geçirmekten keyif alıyorsunuz ve ortak bir arkadaşınız var. Ortak arkadaşınızla keyifli bir anınızı anlatırsınız. Bunun bilimsel sebebi, durmadan aynı anıları prova ederek ve deneyimleyerek diğerlerini unutuyor ve geçmiş ve kendimiz hakkında yeniden şekillenmemiz.

Ergenlik yıllarımızın anıları önemli.

Geçmişe baktığımızda eşit sayıda anı hatırlamıyoruz. Onun yerine, ergenlik ve genç yetişkin olduğumuz zamanları hatırlıyoruz. Bunlar yaşam boyu sürdüreceğimiz kimliklerimizin oluştuğu yıllar. Bundan dolayı bu zamanlara ait anılar bizim için olumlu geliyor. Hafızamız bu anıları özellikle tutuyor. Müzik bu noktada önemli bir yere sahip. Müzik eski anılarımızı hatırlatıyor.

Hafıza sosyal bir birleştirici.

Hafızamızı sosyal ilişki kurmak ve geliştirmek, diğer insanları eğlendirmek ve diğer insanlara ve nesillere öğretmek için kullanıyoruz. Ebeveynlerinin ergenlik anılarını tekrar anlatabilen ve kendi gelişen kimlikleri ile ilişkilendirebilen gençlerin duygusal gelişiminin daha iyi olduğu görünüyor. Yapılan araştırmalara göre, anılar paylaşıldığında yarattığı aidiyet ve ortak kimlik duygusundan daha önemsiz olabiliyor. Anıları hatırlamak kendimizi geçmişte ve şimdide istediğimiz gibi görmemize yardımcı oluyor ve paylaşmak insanlar ile önemli bir anlamda bağ kurmamızı sağlıyor.

Neuroscience News, Why we remember our youth as one big hedonistic party, son güncelleme 21 Ağustos, 2019, https://neurosciencenews.com/youth-memory-hedonism-14769/

Alfa-sinüklein

OHSU’da, Oregon Health & Science University, yapılan yeni bir araştırmaya göre Parkinson ve Lewy Cisimcikli Demans, Parkinson ve diğer demans hastalıkları ile bağlantılı olan bir hastalık, hastalıklarını iyileştirmek için alfa-sinüklein adındaki protein düşünülenden çok farklı bir fonksiyona sahip. Araştırmaya göre, proteinin hücre çekirdeği içindeki DNA’ların hasarlı ipliklerini düzeltme özelliği var. Bu da hücre ölümünü engelleyebileceğini gösteriyor.

Daha detaylı olarak alfa-sinüklein nasıl faydalar sağlayabilir?

Uzmanlar, Parkinson hastalığı gibi hastalıklarda hücre ölümünü engellemesinin kaybolmuş olabileceğini söylüyor. Bilim insanları yapılan deneyde proteinin bu özelliğini gözlemliyor. Bilim insanları, Lewy Cisimcikli Demans hastalığında alfa-sinükleinin beyin hücrelerinin çekirdeklerinden çekildiğini öneriyor.

Doktor Vivek Unni “Bu ilk defa DNA onarımı hakkında işlevlerden herhangi birinin keşfedilişi. Bu, hücrenin hayatta kalması için kritik öneme sahip ve Parkinson hastalığında kaybedilen bir işlev gibi görünüyor.” diyor.

Bulgular, alfa-sinükleinin işlevinin yerine geçecek yeni tedaviler tasarlamanın ya da Parkinson hastalığı ve diğer nörodejeneratif hastalıkları olan kişilerde arttırılmasının mümkün olabileceğini gösteriyor.

Bu araştırma ne anlama geliyor?

Daha basit anlatmak gerekirse, alfa-sinüklein fabrika çalışanları gibi. Bu çalışanlar uzayan kahve molası veriyor ve makineler kendi kendilerine çalışmaya devam ediyor. Alfa- sinüklein bundan dolayı Lewy Cisimcikli Demans hastalığında çok önemli bir göreve sahip. Geliştirebilinecek yeni tedavi yöntemleri ile bu hastalıklara çözümler bulunabilinir.

Neuroscience News, Discovery could lead to new treatments for Parkinson’s, other brain diseases, son güncelleme 29 Temmuz, 2019, https://neurosciencenews.com/alpha-synuclein-dna-14606/

Beyin Nasıl Kokluyor?

Koku almak, kişinin bulunduğu durum ve deneyimlerine bağlı bir şey. (1)

CSHL, Cold Spring Harbor Laboratory, sinirbilimcileri Florin Albeanu, Alexei Koulakov ve meslektaşları Honggoo Chae, Daniel Kepple, CSHL’den Walter Bast ve Harvard Üniversitesi’nden Venkatesh Murthy önceden bulunmuş koku sınıflandırma modellerini test ediyor ve uyuşmazlıkları keşfediyorlar. Albeanu sonuçlar hakkında “Koku hakkında düşününce, beynin ne aradığını gerçekten bilmiyor, ve eğer varsa fiziksel veya kimyasal özellikleri hakkında bilgiye sahip değiliz.” diyor. (2)Yapılan araştırmaya genel anlamda bakarsak, nöronlar kokuları duymamızda koku moleküllerinden daha fazla bağlantılı. (3)

Bu ne anlama geliyor?

Genel olarak, bilim insanları, koku parçacıklarının ilk olarak burun boşluğundan girdiğini, duyu dokusundaki koku alıcı reseptör nöronları tarafından ifade edilen koku alıcı reseptörlerin kendilerine bağlandığını biliyor. Memelilerin ön beyninde bulunan koku giderici ampul, alıcılardan gönderilen bilgileri işliyor. Daha sonra, ampul bu bilgiyi serebral korteks dahil olmak üzere daha yüksek işlem yapan beyin alanlarına gönderiyor. Burada, koku çıkışı mesajları bir geri bildirim döngüsü içinde ampule geri gönderilmeden önce ayrıca analiz ediliyor ve beyinde yayınlanıyor. (4)

Bu araştırma ile ise başka sonuçlar bulundu. Bulunan sonuçlara göre, zengin geri bildirim koku sistemini görsel sistemden biraz farklı kılıyor. Koku alma deneyimi öznel, koku algısı aslında içeriğe ve bireyin önceki deneyimlerine dayanıyor. (5)

Bir başka nokta ise, korteksin erken işleme seviyelerine yönelik kapsamlı bir geri bildirim var ve gelen uyaranların doğası hakkında öngörülerde bulunabilecek ve neye dikkat edersek onu değiştirebiliyor. Bundan dolayı koku alma sistemimiz yeni ve ilgimizi çeken kokuları izole etmek için gürültü ya da kendi nefes kokunuz gibi arka plandaki kokuları bu şekilde çıkarabiliyor. (6)

Bu araştırma neden önemli?

Koulakov araştırmanın sonuçlarının “beklenmedik” olduğunu belirtiyor. Albeanu ve Koulakov koku girişi ve ileri işlemden geçirilmiş ampul çıkışlarının koku seviyesinin farklı yönleriyle ilgilenmesinin muhtemel olduğunu söylüyor. (7)

Araştırmanın sonuçları ve ekibin yorumlarına bakılırsa, bilim dünyasında yeni bir yol açtıkları gözüküyor.

(1)Neuroscience News ,Quantifying how the brain smells, son güncelleme 22 Temmuz, 2019, https://neurosciencenews.com/quantifying-olfaction-14544/

(2)Neuroscience News ,Quantifying how the brain smells, son güncelleme 22 Temmuz, 2019, https://neurosciencenews.com/quantifying-olfaction-14544/

(3)Charlotte Hu, There’s more to smell than meets the nose, son güncelleme 22 Temmuz, 2019, https://www.cshl.edu/theres-more-to-smell-than-meets-the-nose/

(4)Neuroscience News ,Quantifying how the brain smells, son güncelleme 22 Temmuz, 2019, https://neurosciencenews.com/quantifying-olfaction-14544/

(5)Neuroscience News ,Quantifying how the brain smells, son güncelleme 22 Temmuz, 2019, https://neurosciencenews.com/quantifying-olfaction-14544/

(6)Charlotte Hu, There’s more to smell than meets the nose, son güncelleme 22 Temmuz, 2019, https://www.cshl.edu/theres-more-to-smell-than-meets-the-nose/

(7)Neuroscience News ,Quantifying how the brain smells, son güncelleme 22 Temmuz, 2019, https://neurosciencenews.com/quantifying-olfaction-14544/

Posterior Parietal Kortex ve Yeni Fonksiyonu

Doktor David Freedman ve Yang Zhou Chicago Üniversitesi’nde beyinle alakalı yeni bir araştırma yaptılar. Araştırma sonunda beyinde bulunan Posterior Parietal Kortex (PCC) hakkında yeni bir bulgu paylaşıldı.

Posterior Parietal Kortex (PCC) nedir?

Posterior Parietal Kortex beynimizde mekansal farkındalık sağlayan ve hareketlerimizi planlayan kısım.

Yeni bulgu nedir?

Dr. David Freedman ve Doktor – Pos doktora araştırmacısı Yang Zhou’nun yaptığı araştırmaya göre Posterior Parietal Kortex görsel olarak karar vermemizde de yardımcı oluyor. Freedman ve Zhou maymunlar ile yaptıkları bir deney sonucu bu bulguya ulaşıyor.

Maymunlarla nasıl bir deney yapıldı?

Maymunlar basit bir bilgisayar oyunu oynamak için eğitiliyorlar. Oyunda farklı görüntüler ve varılması beklenen yerler var. Freedman ve Zhou maymunların bu görüntülere bakarken gözleri ile nasıl takip ettiklerine bakıyor. Daha detaylı anlatmak gerekirse; yukarı ve sola hareket eden noktalardan oluşan bir desen gösteriliyorsa, gözlerini yeşil noktaya ve noktalar ters yöne doğru hareket ediyorsa da gözlerini kırmızı noktaya kaydırmaları gerekiyor.

Posterior Parietal Kortex’de bulunan Lateral Intraparietal Alan (LIP) karar vermelerinde yardımcı oluyor. Maymunlara sonra Lateral Intraparietal Alan‘ın aktivitesini durduran bir ilaç veriliyor ve aynı oyunu tekrar oynatıyorlar. Bu noktada mekansal farkındalık ve bilinen diğer görevleri dışında maymunların karar da veremedikleri görülüyor.

Deney ne anlatıyor?

2016 yılında Lateral Intraparietal Alan hakkında bir deney daha yapılıyor. Fakat, sadece yön ile alakalı anlama fonksiyonları hakkında bulgulara odaklanılıyor. Freedman ve Zhou bunlara ek olarak karar verme fonksiyonlarını da buluyor.

Bu araştırma nöroloji alanında nasıl yenilikler getirebilir?

Freedman yeni araştırmanın sinirbilimcilere karar verme mekanizmaları, görsel gruplandırma ve benzeri alanlarda ilerlemek için fırsat olduğunu söylüyor. Bunu detaylı bir şekilde anlamak beyinden kaynaklanan hastalık ve rahatsızlıkları tedavi etmek için çok önemli olucak. Sonuçlar, ekibi sinirsel dolaşımın bililşsel fonksiyonlarını daha motive araştırmasını sağlayacak.

Neuroscience News , Area of brain associated with spatial awareness and planning actions also plays crucial role in decision making, son güncelleme 11Temmuz, 2019, https://neurosciencenews.com/decision-making-spatial-awareness-14464/

NEAT1

Sizden, belki de, yıllar yıllar öncesine gidip biyoloji dersinizde RNA ve DNA’yı , nükleik asitler, öğrendiğiniz zamanlara gitmenizi istiyorum. Bu nükleik asitler genellikle renkli kalemlerle çizilerek ya da 3 boyutlu renkli modellerle anlatılırdı. Genetik biliminin en önemli parçalarından biriydiler.

Birmingham’da Alabama Üniversitesinde Doktor Farah Lubin ve ekibinin yaptıkları bir araştırma bilim dünyası ile paylaşıldı. Araştırma NEAT1 adında olan bir RNA hakkındaydı. Araştırmanın sonuçlarına göre NEAT1 hipokampusta bulunuyor ve beynin öğrenme ve hatırlama fonksiyonlarını etkiliyor.

Araştırmayı daha detaylı anlatırsam;

Yapılan araştırmaya göre, NEAT1 hafıza yapılandırmada düzenleyici bir etkiye sahip. NEAT1 öğrenmeyi ve hatırlamayı engelliyor. Daha kolay bir şekilde, NEAT1’ını giden arabanın freni olarak anlatabilirim. Araba çalışsa bile ilerlemesini engelliyor.

Bunun nedeni nedir?

NEAT1 c-FOS denilen gen ile çalışıyor. Bu gende hafızanın oluşmasını sağlıyor. NEAT1 kodlanmayan bir RNA olmasına rağmen genin çalışmasını etkileyebiliyor.

Bu sonuçlara nasıl varılmış?

siRNA tekniği kullanarak yaşlı farelerde bu RNA’yı kapatmayı başarmışlar ve öğrenme ve hatırlamada ilerleme görmüşler.

Bundan sonraki adım nedir?

CRISPR/dCas9 tekniğinin kullanarak NEAT1 ağırlığını arttırdıkları öğrenme ve hatırlama yeteneklerinde azalttıkları daha genç farelerde tersi yönde ilerleme sağlamak.

Çalışmanın önemi nedir?

1.Bu çalışmaya kadar kodlanmayan RNAlar hakkında farklı bir görüş vardı. Çalışmayla beraber diğer kodlanmayan RNAların etkilerinin de bulabilineceği bir yol açıldı.

2.Sonraki çalışmalar NEAT1’ı tamamen kapatmak için CRISPR/dCas9 tekniğine odaklanmalı. Bu şekilde Alzheimer gibi hafıza kaybı yaşanan hastalıklar üzerinde çalışabilirler.

Yazıyı toplamam gerekirse;

NEAT1 kodlanmayan RNA’lar hakkında yeni bir algı yarattı. Bu çalışma ile sağlık alanında diğer kodlanmayan RNA’lar hakkında araştırmalar yapılırsa gelişme sağlanabilir. Son olarak da, Alzheimer gibi ciddi hafıza ilgili hastalıklara yeni bir önleyici oluşturabilinir.

Neuroscience News , A NEAT discovery about memory, son güncelleme 2 Temmuz, 2019, https://neurosciencenews.com/memory-noncoding-rna-14404/

Anısal Hafıza

Arabanızı park ettiğiniz yeri nasıl hatırlarsınız?

Neil Burgess bu sorunun cevabını anısal hafızanızı kullanarak hatırlarsınız olarak veriyor. (1)

Anısal hafıza nedir?

Geçmişte deneyimlediğiniz şeyleri tekrar deneyimlemenizi sağlayan hafıza türü. Beynimiz bunu deneyimleri kaydeden merkezi hipokampusten bilgileri alarak gelecek zamanlarda deneyimleri tekrar yaşamamızı sağlar. (2)

Bunu nasıl yapar?

Bu soruyu cevaplarken 2014 yılında Nobel Fizyoloji veya Tıp Ödülü’ne layık görülmüş John O’Keefe, May-Britt Moser ve Edvard I. Moser‘ın yaptıkları içsel konumlandırma çalışmalarından bahsederek cevap vereceğim.1971’den başlayarak O’Keefe yer hücrelerini buldu ve 2005 yılında May-Britt Moser ve Edvard I. Moser şebeke hücrelerini bularak araştırmaya katkı sağladılar. Heyet te buna bağlı kalarak ödülün %50’sini O’Keefe’e ve diğer paydayı da, %50, %25 – %25 bölerek May-Britt ve Edvard I. Moser’e layık gördü. (3)

Araştırmanın sonuçları nelerdi?

1971 yılında O’Keefe sıçanlar üzerinde yaptığı çalışmada gezindikleri odanın her bir yerinde beyinlerinde ayrı sinir hücresinin etkinleştiğini gözlemledi. Yer hücresi denilen bu hücreler birleşince odanın haritasını çıkardılar. 2005 yılında da May- Britt Moser ve Edvard I. Moser şebeke hücrelerini keşfederek çalışmaya katkıda bulundular. (4)

Yer duygusu ve yön bulma becerisi nedir?

“Yer duygumuz ve yön bulma becerimiz beynimizin en temel işlevleri arasında. Yer duygusu, vücudumuzun bulunduğumuz ortam içindeki konumuna yönelik bir algı sağlar. Bu duygu, yön bulma sırasında bir uzaklık ve yön duygusuyla bağlantılı olarak işler. Bu uzaklık ve yön duygusu ise hareketi ve önceki konumların bilgisini temel alır. Çevremizi tanıyıp hatırlayarak yolumuzu bulmamız bu mekânsal işlevler sayesinde mümkün olur.” (5) Kendi kelimelerimle açıklayacak olursam, yer ve şebeke hücreleri bulunduğumuz mekanı kaydederek gelecek zamanlarda hatırlamamızı sağlar.

Yer duygusu ve yön bulma becerisi nasıl hücreler ile oluşuyor?

Yazının devamına göre “Bu hücreler, entorinal kortekste bulunan ve başın yönü ile odanın sınırlarını tanımayı sağlayan başka hücrelerle birlikte çalışarak hipokampustaki yer hücreleriyle sinirsel devreler kuruyor. İşte bu devre sistemi beynimizde kapsamlı bir konumlandırma sistemi oluşturuyor” (6)

Konuyu toparlamak gerekirse;

Anısal hafıza yer duygusu ve yön bulma becerisi için oldukça önemli. Yer ve şebeke hücrelerinin içsel konumlandırma sistemimize katkıları birçok diğer çalışmalar ile de kanıtlanmış. Bunlardan önemli bir tanesi Brenda Milner’ın hastası Henry Gustav Molaison‘ın, literatürde H.M olarak bilinir, 27 yaşında hipokampusunun alınmasından sonra yaşadığı hafıza kaybı oldu. Hasta 1966 yılında 40. yaş gününde kendi fotoğrafını gördüğünde kendisini tanıyamadı. Kendisini hala 27 yaşında sanıyordu. Bu ve diğer acı eşiğinde değişim gibi diğer sonuçlarla da beraber, H.M sinirbilimine çağ atlatacak bulgulardan birini sundu. (7) Brenda Milner ve diğer bilim insanları yaptığı çalışmalarla beraber anısal hafıza ve hipokampus arasındaki bağı gösterdi.

(1)“ Short term Memory Neil Burgess”, YouTube Video, 10:54, “ Serious Science” , 25 Mayıs, 2018, https://youtu.be/UFE7vyqoiGU

(2)“ Short term Memory Neil Burgess”, YouTube Video, 10:54, “ Serious Science” , 25 Mayıs, 2018, https://youtu.be/UFE7vyqoiGU

(3) İlay Çelik, Yolumuzu Bulmamızı Sağlayan Sistemin Keşfi Nobel Kazandırdı

, son güncelleme 10 Aralık, 2014, http://www.bilimgenc.tubitak.gov.tr/makale/yolumuzu-bulmamizi-saglayan-sistemin-kesfi-nobel-kazandirdi

(4) İlay Çelik, Yolumuzu Bulmamızı Sağlayan Sistemin Keşfi Nobel Kazandırdı

, son güncelleme 10 Aralık, 2014, http://www.bilimgenc.tubitak.gov.tr/makale/yolumuzu-bulmamizi-saglayan-sistemin-kesfi-nobel-kazandirdi

(5) İlay Çelik, Yolumuzu Bulmamızı Sağlayan Sistemin Keşfi Nobel Kazandırdı

, son güncelleme 10 Aralık, 2014, http://www.bilimgenc.tubitak.gov.tr/makale/yolumuzu-bulmamizi-saglayan-sistemin-kesfi-nobel-kazandirdi

(6) İlay Çelik, Yolumuzu Bulmamızı Sağlayan Sistemin Keşfi Nobel Kazandırdı

, son güncelleme 10 Aralık, 2014, http://www.bilimgenc.tubitak.gov.tr/makale/yolumuzu-bulmamizi-saglayan-sistemin-kesfi-nobel-kazandirdi

(7) Necib Mahmuz, Sinirbilim Tarihini Değiştiren Hasta: H.M.

, son güncelleme 19 Haziran, 2019, http://noroblog.net/2019/06/19/sinirbilim-tarihini-degistiren-hasta-h-m/

İnsan ve makaklar nasıl duyuyor?

Kanada’da bulunan McGill Üniversite’sinin yaptığı araştırmaya göre müzik dinlemek dopamin hormonu, mutluluk hormonu, salgılıyor. Araştırma 217 öğrenci üzerinde yapılmaya başlanıyor ve müziğe verdikleri tepkilere göre 8 kişi ile devam ediliyor. Beynimiz en başından beri müziği anlamaya programlı. Fakat yapılan araştırma müziğin insan üzerindeki başka bir etkisini gösteriyor. (1)

Müzik dinlemek yukarıda da yazıldığı gibi biz insanları mutlu eden ve bilimsel olarak vücudumuzda da başka etkiler yaratıyor. İnsanlara benzeyen bir başka hayvan ise maymunlar. Nörobilimci Bevil Conway yaptığı çalışmalardan sonra insan ve maymunların benzer görme sistemlerine sahip olduğunu buluyor. O dönemlerde onunla beraber MIT Üniversitesi’nde bulunan Sam Norman- Haignere’n çalışmalarını takip eden Conway onunla iddaya girerek insan ve maymunların benzer şekilde duyduğunu da savunuyor. Bu keyifli idda ile deneye başlıyorlar. (2)

Deney nasıl yapılıyor? Nasıl sonuçlanıyor?

Deney 6 insan ve 5 makak maymunu üzerinde yapılıyor. Deneyin sonunda maymunların perdeli sesleri bizden farklı duydukları ortaya çıkıyor. (3) Daha basit bir şekilde anlatmak gerekirse; maymunlar Tchaikovsky‘i bizim duyduğumuz keyifli ve enstrumanların etkilerini duyduğumuz gibi duyamıyor. Onlar Tchaikovsky‘i daha boğuk duyuyor. (4)

Bu farklılık ne gösteriyor?

Deney sırasında Fonksiyonel Manyetik Rezonans Görüntüleme (fMRI) kullanılıyor. İnsan beyninde perdeli sesler dinletildiğinde daha fazla yerin çalıştığı gözüküyor. Yapılan olası açıklamalardan biri insan beyninin konuşma ve müzik ile ilerlemesi. İnsanların duyma yetenekleri konuşma ve müzik ile evriliyor. (5)

Yazıyı genel olarak toplarsam;

İnsanlar makak maymunları ile benzer şekilde görse bile perdeli sesleri daha ileri şekilde duyuyor. Deney merak uyandıran sonuçlara bakarsak yeni çalışmalara yön verecek gibi gözüküyor. (7)

(1) Kimberly Sena Moore , Why Listening to Music Makes Us Feel Good, son güncelleme 20 Ocak, 2019, https://www.psychologytoday.com/intl/blog/your-musical-self/201101/why-listening-music-makes-us-feel-good

(2)Neuroscience News , Our brains appear uniquely tuned for musical pitch, son güncelleme 10 Haziran, 2019, https://neurosciencenews.com/music-pitch-brain-14202/

(3) NPR News ,A Musical Brain May Help Us Understand Language And Appreciate Tchaikovsky, son güncelleme 10 Haziran, 2019, https://neurosciencenews.com/music-pitch-brain-14202/

(4) NPR News ,A Musical Brain May Help Us Understand Language And Appreciate Tchaikovsky, son güncelleme 10 Haziran, 2019, https://neurosciencenews.com/music-pitch-brain-14202/

(5) Neuroscience News , Our brains appear uniquely tuned for musical pitch, son güncelleme 10 Haziran, 2019, https://neurosciencenews.com/music-pitch-brain-14202/

(6) Neuroscience News , Our brains appear uniquely tuned for musical pitch, son güncelleme 10 Haziran, 2019, https://neurosciencenews.com/music-pitch-brain-14202/