Deep3DFly

Semih Günel, Helge Rhodin, Daniel Morales, João H. Campagnolo, Pavan Ramdya ve Pascal Fua’nın EPFL’de – École Polytechnique Fédérale de Lausanne– aktif öğrenme alanında değerli bir araştırma gerçekleşti. Araştırmanın amacı sineklerin hareketelerini gözlemleyerek aktif öğrenme alanında ilerleme sağlamaktı.

Araştırma nasıl tasarlandı?

Ramdya’nın deneysel düzeninde bir sinek, minik bir koşu bandı gibi küçük bir yüzen topun üstüne yürürken, yedi kamera her hareketini kaydetti. Sineğin üst kısmı taşınmaz bir stada yapıştırıldı, böylece top üzerinde yürürken daima yerinde kaldı. Bununla birlikte, sinek serbestçe hareket ettiğine “inanıyordu”.Toplanan kamera görüntüleri daha sonra hem Ramdya’nın hem de Fua’nın laboratuvarlarıyla çalışan bir doktora öğrencisi olan Semih Günel’in geliştirdiği derin öğrenme yazılımı DeepFly3D tarafından işlendi. Ramdya, “Bu, disiplinlerarası işbirliğinin gerekli ve dönüştürücü olduğunun iyi bir örneği. Bilgisayar bilimi ve sinirbiliminden yararlanarak uzun zamandır devam eden bir zorluğun üstesinden geldik.” dedi.

Neden araştırmada sinekler kullanıldı?

Ramdya sineklerin kullanılma sebebini “Omurgalıların çoğunun aksine, sinekler neredeyse her araziye tırmanabilirler. Bacaklarının uçlarında yapışkan pedler ve pençeler olduğundan, sinekler duvar ve tavanlara yapışabilirler. Bunlar haraketlerini sağlar. Bu da ilginç çünkü herhangi bir yüzeyde dinlenebilirseniz, doğru zamanda hareket etmesini bekleyerek enerji harcamalarınızı yönetebilirsiniz. ” şeklinde anlattı.

Bu, biyoloji boyunca neredeyse her yerde kullanılan bir model organizma olan sinek Drosophila melanogaster için bir hareket yakalama sistemi olan DeepFly3D’nin gelişimini sürdüren robotların tasarımını bilgilendirmek için uçma davranışını yöneten ilkeleri çıkarma vizyonuydu.

Deep3DFly’ı önemli kılan şey nedir?

DeepFly3D ile ilgili özel olan şey, sineklerin 3B pozunu – veya hatta diğer hayvanları – ortaya çıkarabilmesi. Yani, çeşitli biyolojik uygulamalar için benzeri görülmemiş bir çözünürlükte otomatik olarak tahmin yapıp davranış ölçümleri yapabilir. Yazılımın manuel olarak kalibre edilmesi gerekmiyor ve sinek pozunun hesaplanmasında yaptığı hataları otomatik olarak algılamak ve düzeltmek için kamera görüntülerini kullanıyor. Son olarak, kendi performansını geliştirmek için aktif öğrenmeyi kullanıyor.

DeepFly3D, bir meyve sineğinin hareketlerini, pozlarını ve eklem açılarını üç boyutlu olarak etkin ve doğru bir şekilde modellemek için bir fırsat sağlıyor. Bu, diğer organizmalardaki 3D pozları otomatik olarak modellemek için standart bir yol olabilir.

Yazıyı toplamak gerekirse;

Ramdya’nın da dediği gibi sinek, “Bir model organizma olarak izlenebilirliği ve karmaşıklığı çok iyi dengeliyor.” Buna ek olarak, “Nasıl yaptığını öğrenirsek, robotik ve tıp üzerinde önemli bir etkiye sahip olabiliriz ve belki de en önemlisi, bu öngörüleri nispeten kısa bir sürede elde edebiliriz.”sözlerini de ekliyor. Araştırma genel olarak baktığımızda araştırmanın robotik ve tıp alanlarında etkiye sahip olabilmeleri, getirecekleri yeniliklerle merakı arttırıyor.

Neuroscience News, Deep3DFly: the deep-learning way to design fly-like robots,son güncelleme 9 Ekim, 2019, https://neurosciencenews.com/deep3dfly-ai-15052/

Beyindeki uzun süreli hafıza ve öğrenme mekanizmaları

Virginia Tech ‘de David Xie ve diğer bilim insanlarının yaptığı bir araştırmaya göre, Erg1 ve TET1 uzun süreli hafıza ve öğrenmede önemli rollere sahip.

Bu ne anlama geliyor? Nasıl daha farklı anlatılabilinir?

Bir akıllı telefon aldığınızı düşünün. Satın aldığınız an, ayarlar ve uygulamarın hepsi aynı. Fakat zaman geçtikçe telefonu nasıl kullanırsanız, ayarlar ve uygulamalar da değişicektir. Aynı şekilde, hafızamız da bu şekilde çalışıyor. Deneyimlerimiz ile bir diğer insandan farklı oluyoruz. En basit deneyimlerimiz bile beyinlerimizi hücresel seviyede değiştiriyor.

Xie ve diğer bilim insanları DNA’nın mettilenme sürecinde beyindeki kontrol eden kayıt etkenleri ve enzimleri buldu. Bu çalışma ile, Alzheimer ve diğer hafıza kaybı yaşanan hastalıkların anlaşılması için çok değerli bilgiler sağlanıyor. Xie “Her deneyim ve öğrenme süreciyle farklı insanlar olmaya programlandın. Öğrenme sürecinin beyinde nasıl gerçekleştiğini ve öğrenilen her yeni bilginin yarın sizi nasıl farklılaştıracağını anlamaya başlamak büyüleyici. ”diyor.

Deney nasıl yapılmış? Egr1 ve TET1 nedir?

Egr1 ve TET1 enzimi telefonunuza kayıt yapmanızı sağlayan program gibiler. Deney fareler üzerinde yapıldı. Deney sırasında farelerin beyinlerinin ön korteksine – öğrenmenin kayıtlı olduğu, beynin olgunlaşması en yavaş olduğu birincil beyin bölgesi– bakıldı.

Egr1, DNA’nın RNA’ya transkripsiyonuna yardımcı olan bir protein olan bir transkripsiyon faktörü. Egr1, uzun süreli hafıza oluşumunda hayati bir rol oynuyor ve önceki araştırmalar, transkripsiyon faktörü bir fareden çıkarıldığında hafıza kaybı sonuçlarının ortaya çıktığını gösteriyor.

TET1 ise aktif DNA demetilasyonunda rol oynayan bir enzim. DNA metilasyonu, bir DNA molekülüne bir metil grubu eklendiğinde oluşuyor, bu daha sonra bir genin promotor bölgesini engelliyor. Başka bir deyişle, DNA metillendiğinde genler aktive edilemiyor.

Egr1 ve TET1, bu metil grubunun çıkarılması ile görevlendirilir, böylece gen ifadesi aktive edilebilir ve anılar saklanabilir.

Başka bir benzetme ile anlatmak gerekilirse, temel olarak gen ifademizi kontrol eden veya ifade seviyelerimizi artıran veya azaltan bir “ açık” veya ” kapalı” düğmesi var. EGR1 bu anahtarlama sistemini kullanmamıza yardımcı oluyor, böylece harici bir uyarıcı aldığınızda genler ifade edilecek ve daha hızlı bir şekilde ifade ediliyor.

Araştırmacılar, bu Egr1-TET1 ekip çalışmasının beynin ötesine geçen öğrenme mekanizması olabileceğini görüyorlar. Örneğin, kanda Egr1 ve TET1’e benzer “aile üyeleri” var.

Bağışıklık sisteminde, hafıza B hücreleri ve hafıza T hücreleri immünolojik hafızayı oluşturmak ve korumak için anahtar. Geçmiş istilacıların antijenlerini hatırlama yeteneklerine sahipler, böylece bir sonraki saldırıya uğradıklarında hızlı bir immünolojik tepki başlatabilirler.

Bu çalışma ne anlama geliyor?

Bu süreç teorik olarak diğer organların hatıralar oluşturabileceği ihtimaline işaret ediyor. Bu bulgunun ciddiyeti öğrenme açısından önemli. Burada iki güzel soru akla geliyor;

1.Öğrenmenin daha iyiye gitmek için değiştirebilme olasılığı var mı?

2. Öğrenmeyi geliştirmek için eğitim sistemini değiştirebilir miyiz?

Xie “Bilmediğimiz birçok temel şey var. Örneğin, işaretçiler ve gen anahtarları: Onları nasıl tanımlayabiliriz ve bu anahtarları kullanabilir miyiz? Bu bazı hastalıkları izlemek için kullanılabilir mi? Belirli olayları izlemek için kullanılabilir mi? Bence bize gelen çok şey var ve şu anda neler yapabileceğimizi düşünmemiz gerekiyor, ”diyor. Gelecekteki araştırmalar için, Xie farklı tür nöronların dış uyaranlara cevap vermek için farklı mekanizmaları nasıl kullandıkları hakkında daha fazla bilgi edinmekle ilgileniyor.

Neuroscience News, The mechanisms behind learning and long-term memory in the brain, son güncelleme 2 Ekim, 2019, https://neurosciencenews.com/learning-memory-mechanisms-15020/

Beyindeki motivasyon ile hareket etmeyi bağlayan bir merkez

19 Eylül 2019 tarihinde yayınlanan araştırmaya göre, lateral septum (LS) bir hayvan dolaşırken ve bir ortamda nasıl bir ödül alınacağını öğrenirken hayvanın hızı ve ivmesiyle ilgili bilgileri doğrudan kodlar.

Bu ne demek?

MIT sinirbilimcileri yaptıkları araştırmada, lateral septumun hedefe yönelik hareketi yönlendiren ve motive olunmuş davranışları bağladığını buldu. Örnek vermek gerekirse, akşam yemeği için yiyecek elde etmek beynin tahmin edemeyeceğimiz kadar fazla bölgesinin koordinasyonu ve beraber çalışması ile oluyor. Bunlarla beraber, buz dolabından mı yoksa dışarıdan mı yiyecek alınma gibi etkenleri tartıyor. Hannah Witshafter “ LS’nin yer, hareket ve motivasyonel bilgileri temsil etmesi, LS’nin yer, hız ve diğer çevresel sinyaller dikkate alınarak performansı entegre etmenize veya optimize etmenize yardımcı olabilir.“ diyor.

Bundan önce yapılan araştırmada neler bulundu?

Önceki araştırmalar lateral septuma kaygı, saldırganlık ve etkiyi düzenleme gibi önemli davranışsal işlevleri atfetmişti. Ayrıca bağımlılık, psikoz, depresyon ve kaygı ile ilgili olduğuna inanılıyor.

Sinir bilimciler, lateral septumun mekansal anıları kodlamak ve onları bağlamla ilişkilendirmek için çok önemli bir merkez olan hipokampus ile bağlantılarını ve nörotransmiter dopamin yoluyla hedefe yönelik davranışlara aracılık eden bir bölge olan ventral tegmental alana (VTA) bağlantılarını takip ettiler. Fakat, şimdiye kadar hiç kimse lateral septum’un hareketi ve mekansal ödül bağlamı gibi belirli sinirsel ritimler ile senkronize ederek hareketi doğrudan takip ettiğini ya da hipokampus ile iletişim kurduğunu göstermedi.

Wirtshafter bu konu hakkında “Hipokampus beynin en çok araştırılan bölümlerinden biri. Karşılaştırma yapıldığında motivasyon ve hareketle alakalı bölgeler ile bağlantılı olsa ve hipokampusten fazla sayıda bilgi alsa bile lateral septum hakkında çok daha az şey biliniyor.” diyor.

Ekipden başka bir sinir bilimci olan Wilson,“Lateral septumdaki aktivitenin hareketle kontrol edildiği keşfi, lateral septum aracılığıyla hareket ve dopaminerjik kontrol arasındaki bellek, biliş ve hastalık ile ilgili olabilecek bir bağlantıya işaret ediyor.” dedi.

Nasıl bir deney yapıldı?

T şeklinde bir labirente konulan fareler gözlemlenerek yapıldı. Fareler, ışık ve ses işaretleri kullanarak ödüllendirildiklerine koşullandırıldı.

Yazıyı toparlamak gerekirse;

Wilson ve Wirtshafter “ Genel olarak, bulgular lateral septumdaki harekete bağlı sinyalin, hipokampustan aldığı girdiyle birleştiğinde -hayvan hareketinden kaynaklanan bağlamda ilgili değişiklikler ile beraber – lateral septumun bir hayvanın bulunduğu yerde kendi konumu hakkındaki farkındalığına ve görevi değerlendirme yeteneğine katkıda bulunmasına izin verebileceğini öne sürmektedir.” dedi.

Bu aynı zamanda, lateral septumun rapor edilen etki ve davranışları düzeltme kabiliyetinin iç durumların hareket sırasında nasıl değiştiğini ve bu değişikliklerin sonuçlarını ve sonuçlarını değerlendirme kabiliyetinden kaynaklanabileceğini gösteriyor. Örneğin, lateral septum hareketi pozitif veya negatif bir uyaranın bulunduğu yere doğru veya uzağa yönlendirmeye katkıda bulunabilir.

Bu nedenle, yeni çalışma lateral septumun yönlendirilmiş davranıştaki rolü hakkında yeni bakış açıları sunuyor ve lateral septumun bazı bozukluklarla bilinen ilişkileri göz önüne alındığında, ruh hali, motivasyon ve hareket ve zihinsel hastalıkların nöropsikiyatrik temeli ile ilgili mekanizmaların daha geniş bir şekilde anlaşılması için yeni çıkarımlar sunabilir.

Wirtshafter “ Lateral septumun hareket ve motivasyonda nasıl çalıştığını anlamak, beynin nasıl temel kararlar verdiğini ve bu süreçlerde yaşanan bozulmanın nasıl farklı bozukluklara yol açabileceğini anlamamıza yardımcı olur ”diyor.

Neuroscience News, Study finds hub linking movement and motivation in the brain, son güncelleme 19 Eylül, 2019, https://neurosciencenews.com/movement-motivation-hub-14950/

SuperAgerların Beyin ve Hafıza Yapısı

Cerebral Cortex’de yayınlanan bir araştırmaya göre, SuperAgers’ların diğer yaşıtlarına göre beyninde daha fazla nöron bağı ve buna bağlı olarak gençlerin hafıza yapılarına benzer hafızaya sahip oldukları bulundu.

SuperAgers kimlerdir? Özellikleri neler?

SuperAgers, diğer yaşça ilerideki bireylerden farklı olarak hafızaları daha ileri olan insan grubu. Bilim dünyasında nasıl böyle kaldıkları önemli bir konu. Onların alışkanlıkları ve nasıl yaşadıklarına bakılarak hafızayı kuvvetli tutmak gibi konularda araştırma yapılıyor. Jiahe Zhang, Joseph M Andreano, Bradford C Dickerson, Alexandra Touroutoglou ve Lisa Feldman Barrett bu araştırmalardan birini yapan bir takım.

Nasıl bir araştırma yapıldı? Sonuçlar neler?

Bu 3 araştırma yapılan bir serinin 2. aşaması. Takım yaptıkları araştırmada, 60 ile 80 ve 18 ile 35 yaşları arasındaki bireyleri incelediler. Araştırmada fMRI, salience network (SN) ve default mode network (DMN) kullanıldı. Takımın tahmini, tipik yaşlı yetişkinlerin bu beyin dalgalarında daha az senkronizasyona sahip olacağı – daha az verimli ağlar – ve superagerlarında genç yetişkinler kadar verimli ağlara sahip olacağıydı. Takım tahminlerinin doğru olduğunu belirtti.

İlk çalışmada, tipik yaşlı yetişkinlerle karşılaştırıldığında, superagerların beyinlerinin, öğrenme, saklama ve bilgi alma da dahil olmak üzere belleğe katkıda bulunan süreçler için önemli olan bazı alanlarda daha büyük olduğu görüldü. Ancak, beyin bölgeleri izole adalar değil; karmaşık davranışlara izin vermek için birbirleriyle “konuşan” ağlar oluşturuyorlar. Dr. Alexandra Touroutoglou “ Beyin bölgeleri arasındaki bu iletişim normal yaşlanma sırasında bozuluyor, Superagers sadece genç beyin yapısını değil, aynı zamanda genç bağları gösteriyor. ” diyor.

Ekip gelecekte ne planlıyor?

Takım, bir sonraki çalışmasında hafıza ve diğer bilişsel görevleri yapan beyinlerden gelen fMRI verilerini analiz edecek. Dr. Touroutoglou, birlikte ele alındığında, çalışmaların gelecekteki araştırmacılar için başarılı yaşlanmanın biyolojik belirteçlerini geliştirmeleri için temeller sağlamasının umut edildiğini paylaştı.

SuperAgerların daha büyük ve iyi beyin ile doğup doğmadıkları bilim insanlarının çözmek istediği bir sır. Sonraki araştırmalar genetik, egzersiz, sosyal bağ ve diğer yaşam etkenlerinin etkisini ölçebilir. Dickerson “Onlara superagers gibi olmaları için vereceğimiz reçeteyi belirlemeyi umuyoruz. İnsanlar superager olmak isterlerse onlara yardımcı olmak amacımız.” diyor.

Neuroscience News, ‘Superagers’ over 80 have the memory and brain connectivity of twenty-somethings, son güncelleme 9 Eylül, 2019, https://neurosciencenews.com/superager-brain-connections-14885/

Kan damarlarından geçecek şekilde tasarlanan robotik iplik

MIT mühendisleri üzerinde çalıştıkları yeni robotik iplik ile, inme ve diğer beyinle alakalı hastalıklara pıhtı azaltan alternatif bir tedavi üzerinde çalışıyor.

İplik beynin labirent damar sistemi, labrynthine vasculature, gibi dar ve dolambaçlı yollardan aktif olarak kayabiliyor ve manyetik olarak yönlendirilebiliniyor. Gelecekte iplik mevcut endovasküler teknolojilerle eşleştirilerek, doktorların robotu ,hastanın anevrizmaları ve felçlerinde meydana gelen gibi, tıkanıklıkları ve lezyonları hızlı bir şekilde tedavi etmek için hastanın beyin damarlarında uzaktan yönlendirmelerine olanak sağlayabilir.

Doç. Xuanhe Zhao, MIT Üniversitesi, “İnme, Amerika Birleşik Devletleri’nde beş numaralı ölüm ve önde gelen bir sakatlık nedeni. Hastalar akut inme ilk 90 dakika içinde tedavi edilebilirse, hayatta kalma oranları önemli ölçüde artabilir. Bu ‘altın saat’ içinde kan damarı tıkanıklığını tersine çevirecek bir cihaz tasarlayabilirsek, kalıcı beyin hasarını önleyebiliriz. Bu bizim umudumuz.” diyor.

Bu tedavi neden önemli?

Doktorlar genellikle, beyindeki kan pıhtılarını temizlemek için bir cerrahın hastanın ana arterinden genellikle bacak veya kasıktan ince bir tel geçirdiği minimal yayılan bir ameliyat olan endovasküler bir prosedür uygular. X ışınlarını kullanarak kan damarlarını aynı anda görüntüleyen bir fluoroskop tarafından yönlendirilen cerrah, daha sonra teli elle hasarlı beyin damarına doğru döndürür. Etkilenen bölgeye ilaç veya pıhtı alma cihazları iletmek için bir sonda tel boyunca geçirilebilir.

Ekibin bir başka üyesi olan Yoonho Kim, prosedürün fiziksel olarak yoran ve görevde özel olarak eğitilmiş cerrahların fluoroskopiden tekrarlanan radyasyona maruz kalmaya dayanmasını gerektirdiğini söylüyor.

Bu tür prosedürlerde kullanılan teller pasif, yani manuel olarak manipüle edilmeleri gerekir ve hastaya zarar verebilir.

Ekip, laboratuvarlarındaki gelişmelerin hem telin tasarımında hem de endovasküler prosedürleri iyileştirmeye yardımcı olabileceğini fark etti.

Ekibin çalışmaları neler?

Geçtiğimiz yıllar boyunca, ekip bir mıknatısın yönünü takip ederek her iki hidrojelde – çoğunlukla sudan üretilen biyouyumlu malzemeler – ve 3 boyutlu basılmış manyetik olarak çalıştırılan, yalnızca sürünerek, zıplayarak ve hatta bir topu yakalamak için tasarlanabilen malzemeler geliştirdi.

Robotik ipliğin çekirdeği nikel-titanyum alaşımından veya hem nitril hem de yaylı bir malzemeden, “nitinol” den, yapıldı. Büküldüğü zaman şeklini koruyan elbise askısının aksine, bir nitinol tel orijinal şekline dönerek, sıkı, kıvrımlı kapların içinden sarımda daha fazla esneklik sağlar. Ekip telin çekirdeğini, kauçuk parçacıklarından ya da manyetik parçacıklarla gömdüğü mürekkeple kapladı.

Son olarak, manyetik kaplamanın hidrojel ile kaplanması ve bağlanması için daha önce geliştirdikleri temel manyetik parçacıkların yanıt vermesini etkilemeyen ve aynı zamanda telin pürüzsüz, sürtünmesiz, biyouyumlu bir yüzeyle donatılmasını sağlayan kimyasal bir işlem kullandı.

Robotik ipliğin hassasiyetini ve aktivasyonunu, bir kukla ipleri gibi büyük bir mıknatıs kullanarak, ipliği iğne halkasının içinden geçiren bir ipliği hatırlatan küçük halkalardan oluşan bir engel boyunca yönlendirmek için gösterdiler.

Araştırmacılar aynı zamanda ipliği, gerçek bir hastanın beyninin BT taramasından sonra modellenmiş pıhtı ve anevrizmalar dahil olmak üzere beynin ana kan damarlarının yaşam boyu silikon bir kopyasında test ettiler. Ekip, silikon kaplarını, kanın viskozitesini simüle eden bir sıvı ile doldurdu. Ardından, robotu kapların dolambaçlı dar yollarına yönlendirmek için model etrafında büyük bir mıknatısı elle manipüle etti.

Kim, robotik ipliğin işlevsel hale getirilebileceğini, yani özelliklerin eklenebileceğini – örneğin pıhtı düşürücü ilaçlar sağlamak veya lazer ışığıyla tıkanıklıkları gidermek için – söylüyor. Sonraki adımı göstermek için ekip, dişlinin nitinol çekirdeğini bir optik fiber ile değiştirdi ve robotu manyetik olarak yönlendirebileceklerini ve robot bir hedef bölgeye ulaştığında lazeri aktif hale getirebileceklerini buldu.

Bu tedavinin avantajları neler?

Araştırmacılar, hidrojel ile kaplanmış ve hidrojene kaplanmamış robot iplik arasında karşılaştırma yaptı. Hidrojelin dişlinin çok ihtiyaç duyulan, kaygan bir avantaj sağladığını ve sıkışıp kalmadan daha dar alanlarda kaymasını sağladığını buldular. Endovasküler cerrahide, bu özellik, iplik ilerledikçe damar astarlarının sürtünmesini ve yaralanmasını önlemenin anahtarı olacaktır.

Peki bu yeni robot ipliği cerrahları radyasyondan nasıl uzak tutabilir? Kim, manyetik yönden yönlendirilebilen bir telin, cerrahların hastanın tellerini fiziksel olarak hastanın kan damarlarından geçirme zorunluluğunu ortadan kaldırdığını söylüyor. Bu, doktorların bir hastaya ve daha da önemlisi radyasyon üreten fluoroskopa yakın olmaları gerekmeyeceği anlamına geliyor.

Yazıyı toplamak gerekirse;

Tasarlanan iplik bir çok alanda kolaylık sağlayacak. Hastalıklar daha kolay tedavi edilirken, doktorlarında yöntemleri ilerleyecek.

Kim’in dediğine göre, mevcut platformlar manyetik alan uygulayabilir ve fluoroskopi prosedürünü hastaya aynı anda yapabilir. Doktor, manyetik alanı bir joystick ile kontrol eden diğer odada veya hatta farklı bir şehirde olabilir. Umutları bir sonraki adımda robot ipliğimizi yaşayan organizmada test etmek için mevcut teknolojilerden yararlanmak.

Neuroscience News, Robotic thread is designed to slip through the brain’s blood vessels, son güncelleme 28 Ağustos, 2019, https://neurosciencenews.com/robotic-thread-bbb-14822/

Neden geçmişimizi haz veren duygularla hatırlıyoruz?

Farzedin arkadaşlarınızla beraber bir yemektesiniz ve geçmiş hakkında konuşmaya başladınız. Bir anda gençlik yıllarınızda yaşadığınız bir anınız aklınıza geldi ve keyifle anlatmaya başladınız. Geçmişinize baktığınızda bu ne kadar oluyor? Kaç defa gençliğiniz sizi keyiflendiren konulara dönüşüyor?

Yapılan araştırmaya göre bunu yapan beynimiz. Bunun 3 nedeni bulunuyor.

1. Hafıza seçici.

2. Ergenlik yıllarımızın anıları önemli.

3. Hafıza sosyal bir birleştirici.

Hafızanın seçici olması.

Bir tecrübeyi veya olayı hatırlamak için dikkat etmemiz gerekir. O zaman düşünerek ya da konuşarak prova yapılır. Bu şekilde kodlanmış olaylar, uzun süreli hafızamızda saklanır. Ama her hatıramızı hatırlamayız. Hatırladığımız anılar bizim için duygusal anlamı olan, ilk deneyim ve büyük değişiklikler içerenlerdir.

Bununla beraber, bazı anılarımızı hatırlamamızın psikolojik amaçları var. Kendimizi nasıl görmek istiyorsak ona göre anılarımızı hatırlıyoruz. Örnek vermek gerekirse, konuştuğunuz kişiyle vakit geçirmekten keyif alıyorsunuz ve ortak bir arkadaşınız var. Ortak arkadaşınızla keyifli bir anınızı anlatırsınız. Bunun bilimsel sebebi, durmadan aynı anıları prova ederek ve deneyimleyerek diğerlerini unutuyor ve geçmiş ve kendimiz hakkında yeniden şekillenmemiz.

Ergenlik yıllarımızın anıları önemli.

Geçmişe baktığımızda eşit sayıda anı hatırlamıyoruz. Onun yerine, ergenlik ve genç yetişkin olduğumuz zamanları hatırlıyoruz. Bunlar yaşam boyu sürdüreceğimiz kimliklerimizin oluştuğu yıllar. Bundan dolayı bu zamanlara ait anılar bizim için olumlu geliyor. Hafızamız bu anıları özellikle tutuyor. Müzik bu noktada önemli bir yere sahip. Müzik eski anılarımızı hatırlatıyor.

Hafıza sosyal bir birleştirici.

Hafızamızı sosyal ilişki kurmak ve geliştirmek, diğer insanları eğlendirmek ve diğer insanlara ve nesillere öğretmek için kullanıyoruz. Ebeveynlerinin ergenlik anılarını tekrar anlatabilen ve kendi gelişen kimlikleri ile ilişkilendirebilen gençlerin duygusal gelişiminin daha iyi olduğu görünüyor. Yapılan araştırmalara göre, anılar paylaşıldığında yarattığı aidiyet ve ortak kimlik duygusundan daha önemsiz olabiliyor. Anıları hatırlamak kendimizi geçmişte ve şimdide istediğimiz gibi görmemize yardımcı oluyor ve paylaşmak insanlar ile önemli bir anlamda bağ kurmamızı sağlıyor.

Neuroscience News, Why we remember our youth as one big hedonistic party, son güncelleme 21 Ağustos, 2019, https://neurosciencenews.com/youth-memory-hedonism-14769/

Alfa-sinüklein

OHSU’da, Oregon Health & Science University, yapılan yeni bir araştırmaya göre Parkinson ve Lewy Cisimcikli Demans, Parkinson ve diğer demans hastalıkları ile bağlantılı olan bir hastalık, hastalıklarını iyileştirmek için alfa-sinüklein adındaki protein düşünülenden çok farklı bir fonksiyona sahip. Araştırmaya göre, proteinin hücre çekirdeği içindeki DNA’ların hasarlı ipliklerini düzeltme özelliği var. Bu da hücre ölümünü engelleyebileceğini gösteriyor.

Daha detaylı olarak alfa-sinüklein nasıl faydalar sağlayabilir?

Uzmanlar, Parkinson hastalığı gibi hastalıklarda hücre ölümünü engellemesinin kaybolmuş olabileceğini söylüyor. Bilim insanları yapılan deneyde proteinin bu özelliğini gözlemliyor. Bilim insanları, Lewy Cisimcikli Demans hastalığında alfa-sinükleinin beyin hücrelerinin çekirdeklerinden çekildiğini öneriyor.

Doktor Vivek Unni “Bu ilk defa DNA onarımı hakkında işlevlerden herhangi birinin keşfedilişi. Bu, hücrenin hayatta kalması için kritik öneme sahip ve Parkinson hastalığında kaybedilen bir işlev gibi görünüyor.” diyor.

Bulgular, alfa-sinükleinin işlevinin yerine geçecek yeni tedaviler tasarlamanın ya da Parkinson hastalığı ve diğer nörodejeneratif hastalıkları olan kişilerde arttırılmasının mümkün olabileceğini gösteriyor.

Bu araştırma ne anlama geliyor?

Daha basit anlatmak gerekirse, alfa-sinüklein fabrika çalışanları gibi. Bu çalışanlar uzayan kahve molası veriyor ve makineler kendi kendilerine çalışmaya devam ediyor. Alfa- sinüklein bundan dolayı Lewy Cisimcikli Demans hastalığında çok önemli bir göreve sahip. Geliştirebilinecek yeni tedavi yöntemleri ile bu hastalıklara çözümler bulunabilinir.

Neuroscience News, Discovery could lead to new treatments for Parkinson’s, other brain diseases, son güncelleme 29 Temmuz, 2019, https://neurosciencenews.com/alpha-synuclein-dna-14606/

Beyin Nasıl Kokluyor?

Koku almak, kişinin bulunduğu durum ve deneyimlerine bağlı bir şey. (1)

CSHL, Cold Spring Harbor Laboratory, sinirbilimcileri Florin Albeanu, Alexei Koulakov ve meslektaşları Honggoo Chae, Daniel Kepple, CSHL’den Walter Bast ve Harvard Üniversitesi’nden Venkatesh Murthy önceden bulunmuş koku sınıflandırma modellerini test ediyor ve uyuşmazlıkları keşfediyorlar. Albeanu sonuçlar hakkında “Koku hakkında düşününce, beynin ne aradığını gerçekten bilmiyor, ve eğer varsa fiziksel veya kimyasal özellikleri hakkında bilgiye sahip değiliz.” diyor. (2)Yapılan araştırmaya genel anlamda bakarsak, nöronlar kokuları duymamızda koku moleküllerinden daha fazla bağlantılı. (3)

Bu ne anlama geliyor?

Genel olarak, bilim insanları, koku parçacıklarının ilk olarak burun boşluğundan girdiğini, duyu dokusundaki koku alıcı reseptör nöronları tarafından ifade edilen koku alıcı reseptörlerin kendilerine bağlandığını biliyor. Memelilerin ön beyninde bulunan koku giderici ampul, alıcılardan gönderilen bilgileri işliyor. Daha sonra, ampul bu bilgiyi serebral korteks dahil olmak üzere daha yüksek işlem yapan beyin alanlarına gönderiyor. Burada, koku çıkışı mesajları bir geri bildirim döngüsü içinde ampule geri gönderilmeden önce ayrıca analiz ediliyor ve beyinde yayınlanıyor. (4)

Bu araştırma ile ise başka sonuçlar bulundu. Bulunan sonuçlara göre, zengin geri bildirim koku sistemini görsel sistemden biraz farklı kılıyor. Koku alma deneyimi öznel, koku algısı aslında içeriğe ve bireyin önceki deneyimlerine dayanıyor. (5)

Bir başka nokta ise, korteksin erken işleme seviyelerine yönelik kapsamlı bir geri bildirim var ve gelen uyaranların doğası hakkında öngörülerde bulunabilecek ve neye dikkat edersek onu değiştirebiliyor. Bundan dolayı koku alma sistemimiz yeni ve ilgimizi çeken kokuları izole etmek için gürültü ya da kendi nefes kokunuz gibi arka plandaki kokuları bu şekilde çıkarabiliyor. (6)

Bu araştırma neden önemli?

Koulakov araştırmanın sonuçlarının “beklenmedik” olduğunu belirtiyor. Albeanu ve Koulakov koku girişi ve ileri işlemden geçirilmiş ampul çıkışlarının koku seviyesinin farklı yönleriyle ilgilenmesinin muhtemel olduğunu söylüyor. (7)

Araştırmanın sonuçları ve ekibin yorumlarına bakılırsa, bilim dünyasında yeni bir yol açtıkları gözüküyor.

(1)Neuroscience News ,Quantifying how the brain smells, son güncelleme 22 Temmuz, 2019, https://neurosciencenews.com/quantifying-olfaction-14544/

(2)Neuroscience News ,Quantifying how the brain smells, son güncelleme 22 Temmuz, 2019, https://neurosciencenews.com/quantifying-olfaction-14544/

(3)Charlotte Hu, There’s more to smell than meets the nose, son güncelleme 22 Temmuz, 2019, https://www.cshl.edu/theres-more-to-smell-than-meets-the-nose/

(4)Neuroscience News ,Quantifying how the brain smells, son güncelleme 22 Temmuz, 2019, https://neurosciencenews.com/quantifying-olfaction-14544/

(5)Neuroscience News ,Quantifying how the brain smells, son güncelleme 22 Temmuz, 2019, https://neurosciencenews.com/quantifying-olfaction-14544/

(6)Charlotte Hu, There’s more to smell than meets the nose, son güncelleme 22 Temmuz, 2019, https://www.cshl.edu/theres-more-to-smell-than-meets-the-nose/

(7)Neuroscience News ,Quantifying how the brain smells, son güncelleme 22 Temmuz, 2019, https://neurosciencenews.com/quantifying-olfaction-14544/

Merak Nedir?

Merak nedir?

1.Bize yeni şeyler keşfetmemizi sağlayan duygu.

2.Daha somut anlatmak gerekirse, bir konuyu daha ileri görmemizi sağlayan duygu.

3.Tarihe baktığımızda, bugün kullandığımız şeylerin kökü.

4. İnsanları gökyüzüne bakmaktan oraya gidecek araçları yaptıran şey.

Ted konuşmalarına konu bulmak için baktığımda karşıma “Bunu yazabilirim.” dedirten güzel bir konu çıktı. Konu yapılan bir teleskop hakkındaydı. Konuyu araştırırken bunu merak ile birleştirirsem çok güzel bir yazı olur diye düşündüm.

Bu teleskop neydi?

Dev Macellan Teleskobu, şuan yapılmakta olan dünyanın dünyanın en büyük teleskobu. 2025 yılında yapımı bitecek. NASA’nın yapmış olduğu Hubble Teleskobu’ndan 10 kat daha net görüntüler verecek. (1) Örnek vermek gerekirse, Philadelphia’da bir insan bozuk para tuttuğunda New York’da bu teleskopla paranın kabartmasını, meşalesini, görebilecekler. (2)

Bu görüntü nasıl sağlanacak?

“Bundan 6 yıl sonra kullanıma sunulduğunda dünya üzerinde yer alan en geniş rasathaneye dönüşmesi beklenen GMT, her biri yaklaşık 8.2 metreden oluşan 6 adet yekpare aynadan oluşuyor. Baştan sona yaklaşık 25 metre olan teleskop, 368 metre karelik bir alanı kaplayacak.” (3) Teleskop Şili’de Vallenar, Atacama çölünde olacak. Şuan bir aynası yapılmış ve diğer 4 ayna ise farklı aşamalarda olmak üzere yapılıyor. Aynalar çiçek şeklinde yerleştirilecek. Arizona Üniversitesi Optik Bilimler Fakültesi’nde Asistan Profesör olan Dae Wook Kim, “Evrenin doğduğu zamana ait fotoğraflarını çekmek istiyoruz.” dedi. Bu teleskop ile yıldızların oluşumları ve daha uzakta olan gezegenlerini incelemek istiyorlar. Teleskobun, en temel sayılabilecek, katkılarından biri ise gökbilimcilerin evrenin ebediyetini incelemesini sağlayacak ve temel fizik yasalarımızı test edebilmesi. (4) Evrenin %97’si hala bilinmiyor ve Dev Macellan bu yüzdeyi azaltabilecek icatlardan biri. (5)

Fotoğraf GMTO’dan alınmıştır.*

Bu konu neden önemli?

Demin de yazdığım gibi merak yeni şeyleri keşfetmemizi sağlayan duygu ve Dev Macellan Teleskobu bu duyguyu yansıtan bir gelişme. Bütün detayları yanı sıra, Kim’in “Evrenin doğduğu zamana ait fotoğraflarını çekmek istiyoruz.” (6) sözü çok etkileyici.

Merak neden önemli?

Merakın duygusal, fiziksel, sosyal hatta sağlıksal faydaları var. Bunları anlatmak gerekirse;

1. Hayatta kalmamıza yardımcı olur. Yenilikçilik arayışı ve yenilik,farkında olmamıza ve sürekli değişen çevremiz hakkında bilgi edinmemize yardımcı oluyor. Bu nedenle beyinlerimiz yeni şeylerle karşılaştığımızda dopamin ve diğer iyi hissettiren kimyasalları serbest bırakmak için gelişmiş olabilir.

2. Meraklı insanlar daha mutlu. Araştırmalar, merak seviyelerinin daha yüksek pozitif duygu düzeyleri, daha düşük kaygı düzeyi, yaşamdan daha fazla memnuniyet ve daha fazla psikolojik sağlık ile ilişkili olduğunu gösteriyor. Tabii ki, en azından kısmen, daha mutlu olan insanlar daha çok meraklı olma eğiliminde olabilirler, ancak yenilik bizi iyi hissettirdiği için , diğer tarafa da gitmesi muhtemel görünüyor.

3. Başarıyı arttırır. Araştırmalar, merakın okulda daha fazla keyif ve katılım ve daha yüksek akademik başarı ile işyerinde daha fazla öğrenme, katılım ve performans sağladığını ortaya koyuyor. Sağduyu gibi gözükebilir, ancak ne yaptığımıza daha çok merak ve ilgi duyduğumuzda dahil olmak, çaba göstermek ve iyi yapmak daha kolay.

4. Empatimizi genişletebilir. Başkalarını merak ettiğimiz ve her zamanki sosyal çevremizin dışındaki insanlarla konuştuğumuzda, yaşamları, deneyimleri ve dünya görüşlerini kendimizinkinden daha iyi anlayabiliyoruz. Bir dahaki sefere yabancı biriyle, özellikle de size benzemeyen biriyle onlarla kişisel bir düzeyde iletişime girmeyi ve ne söyleyecekleriyle ilgilendiğinizi göstermeyi deneyin.

5. İlişkileri güçlendirmeye yardımcı olur. Bir araştırma yabancılardan kişisel soruları sormalarını ve cevaplamalarını istedi, süreç bilimcileri “karşılıklı kendini açıklama” diyorlardı. İletişimde gerçek merak gösterdiklerinde insanların daha sıcak ve daha çekici olarak değerlendirildiğini buldular (olumlu ve olumsuz duygu seviyeleri eşin çekicilik ve yakınlık duygularını etkilememiştir). Bu, birine karşı merak göstermenin onlarla yakınlığınızı geliştirmenin harika bir yolu olduğu anlamına geliyor.

6. Merak, sağlık hizmetlerini iyileştirir. Araştırmalar, doktorların hastalarının bakış açılarını gerçekten merak ettikleri zaman, hem doktorların hem de hastaların daha az öfke ve hayal kırıklığı yaşadıklarını ve daha iyi kararlar aldıklarını ve sonuçta tedavinin etkinliğini artırdığını gösteriyor. (7)

Yazıyı toplamam gerekirse;

Merak her alanda çok önemli bir duygu. Merak insanları bir şeyi yapmaya daha istekli ve genel anlamda da açık fikirli yapıyor. Dev Macellan Teleskobu bütün özellikleri, öncelikle evrenin oluştuğu zamanı gösterebilme, ile uzay biliminde 50 yıl yeni buluşlar için yol açacak. (8) Şahsi anlamda konuşursam, ben bir ağabeyle büyüdüm ve Süperman en sevdiğim süper kahraman. En sevdiğim kurgu filmleri için uzay çok güzel bir tema ve “Geleceğe Dönüş” gibi filmlerin de şuanki teknolojiyi nasıl gösterdiğini düşünürsek uzay temalı filmlerin bilim insanlarını bir şekilde etkilediğini düşünüyorum.

(1) Muhsin Bayram, Dev Macellan Teleskobu: Bilmeniz Gerekenler, son güncelleme 9 Kasım, 2017, https://www.technopat.net/2017/11/09/dev-macellan-teleskobu-uzayi-10-kat-daha-net-goruntuleyecek/

(2) Building Giant Magellan, the world’s largest telescope, son güncelleme 18 Temmuz, 2019, https://www.cbsnews.com/news/giant-magellan-telescope-building-the-worlds-largest-telescope/

(3) Muhsin Bayram, Dev Macellan Teleskobu: Bilmeniz Gerekenler, son güncelleme 9 Kasım, 2017, https://www.technopat.net/2017/11/09/dev-macellan-teleskobu-uzayi-10-kat-daha-net-goruntuleyecek/

(4) Jay Bennett, The Deep Space Eye in the Desert, son güncelleme 14 Şubat, 2018, https://www.popularmechanics.com/space/telescopes/a13978782/giant-magellan-telescope-chile-atacama/

(5)Building Giant Magellan, the world’s largest telescope, son güncelleme 18 Temmuz, 2019, https://www.cbsnews.com/news/giant-magellan-telescope-building-the-worlds-largest-telescope/

(6)Jay Bennett, The Deep Space Eye in the Desert, son güncelleme 14 Şubat, 2018, https://www.popularmechanics.com/space/telescopes/a13978782/giant-magellan-telescope-chile-atacama/

(7)Emily Campbell, Six Surprising Benefits of Curiosity, son güncelleme 24 Eylül, 2015, https://greatergood.berkeley.edu/article/item/six_surprising_benefits_of_curiosity

(8)Muhsin Bayram, Dev Macellan Teleskobu: Bilmeniz Gerekenler, son güncelleme 9 Kasım, 2017, https://www.technopat.net/2017/11/09/dev-macellan-teleskobu-uzayi-10-kat-daha-net-goruntuleyecek/

NEAT1

Sizden, belki de, yıllar yıllar öncesine gidip biyoloji dersinizde RNA ve DNA’yı , nükleik asitler, öğrendiğiniz zamanlara gitmenizi istiyorum. Bu nükleik asitler genellikle renkli kalemlerle çizilerek ya da 3 boyutlu renkli modellerle anlatılırdı. Genetik biliminin en önemli parçalarından biriydiler.

Birmingham’da Alabama Üniversitesinde Doktor Farah Lubin ve ekibinin yaptıkları bir araştırma bilim dünyası ile paylaşıldı. Araştırma NEAT1 adında olan bir RNA hakkındaydı. Araştırmanın sonuçlarına göre NEAT1 hipokampusta bulunuyor ve beynin öğrenme ve hatırlama fonksiyonlarını etkiliyor.

Araştırmayı daha detaylı anlatırsam;

Yapılan araştırmaya göre, NEAT1 hafıza yapılandırmada düzenleyici bir etkiye sahip. NEAT1 öğrenmeyi ve hatırlamayı engelliyor. Daha kolay bir şekilde, NEAT1’ını giden arabanın freni olarak anlatabilirim. Araba çalışsa bile ilerlemesini engelliyor.

Bunun nedeni nedir?

NEAT1 c-FOS denilen gen ile çalışıyor. Bu gende hafızanın oluşmasını sağlıyor. NEAT1 kodlanmayan bir RNA olmasına rağmen genin çalışmasını etkileyebiliyor.

Bu sonuçlara nasıl varılmış?

siRNA tekniği kullanarak yaşlı farelerde bu RNA’yı kapatmayı başarmışlar ve öğrenme ve hatırlamada ilerleme görmüşler.

Bundan sonraki adım nedir?

CRISPR/dCas9 tekniğinin kullanarak NEAT1 ağırlığını arttırdıkları öğrenme ve hatırlama yeteneklerinde azalttıkları daha genç farelerde tersi yönde ilerleme sağlamak.

Çalışmanın önemi nedir?

1.Bu çalışmaya kadar kodlanmayan RNAlar hakkında farklı bir görüş vardı. Çalışmayla beraber diğer kodlanmayan RNAların etkilerinin de bulabilineceği bir yol açıldı.

2.Sonraki çalışmalar NEAT1’ı tamamen kapatmak için CRISPR/dCas9 tekniğine odaklanmalı. Bu şekilde Alzheimer gibi hafıza kaybı yaşanan hastalıklar üzerinde çalışabilirler.

Yazıyı toplamam gerekirse;

NEAT1 kodlanmayan RNA’lar hakkında yeni bir algı yarattı. Bu çalışma ile sağlık alanında diğer kodlanmayan RNA’lar hakkında araştırmalar yapılırsa gelişme sağlanabilir. Son olarak da, Alzheimer gibi ciddi hafıza ilgili hastalıklara yeni bir önleyici oluşturabilinir.

Neuroscience News , A NEAT discovery about memory, son güncelleme 2 Temmuz, 2019, https://neurosciencenews.com/memory-noncoding-rna-14404/